синтезатор t
опоры
На вход поступает аддитивная смесь.
Принцип работы ФАП
Измеритель фазы является следящей системой с отрицатель-
ной обратной связью. Опорное колебание с фа-
зой - экстраполированная фаза. º. Чем точнее
экстраполяция, т.е. чем меньше , тем точ-
нее будет оценка.
Существует два типа детерминированных управляемых процес-
сов (детерминированных систем)
(1) - детерминированная система
- управление (некоторая функция от дискретного
времени, которая входит в разностное уравнение
динамической системы)
Стохастическая управляемая система
(2) , где - шум(может быть белым
),
а может быть и небелым, например, описываться сколь-
зящим средним ().
Критерий оптимального управления
Пусть модель (1) или (2) генерирует случайный процесс :
- управляемый процесс с дискретным
временем, т.е. процесс должен развиваться таким образом,
чтобы минимизировать некоторую функцию риска, тогда уп-
равление называется оптимальным.
Математически это выглядит так :
,
где f(×) - выпуклая функция
При движении ракеты по некоторой траектории из точки А в
точку В траектория должна быть такой, чтобы минимизиро-
вать энергетические затраты на управление.
Пример 2 :
Существует некоторая эталонная траектория.
Необходимо привести движение про-
цесса к эталону за минимальное
время. Это называется оптимизация
x(t)-эталон по быстродействию. Существует мно-
жество способов аналитического на-
хождения оптимальной функции упра-
x(t) вления.
Метод динамического программирования
Имеется детерминированная система :
(1)
Принцип Бэлмана - состоит в том, что оптимальное управ-
ление ищется с конца в начало (из будущего в прошлое).
Задача решается в обратном направлении.
(2)
Аналитическое решение задачи по Бэлману
Предположим, что мы отправились из и прошли траекторию:
. И предположим, что за ‘k’ шагов управление вы-
брали. Принцип динамического программирования основывает-
ся на том, что любой кусок траектории оптимального управ-
ления является оптимальным.
(3)
Траектория от (k+1) до ‘n’ называется хвостом.
N - последняя точка в управлении
С учетом (3) запишем :
(4)
Допустим, что начиная от шага (k+1) до ‘n’ в формуле (4)
оптимальное управление уже выбрано.
(5)
k=N,N-1, .,1
(6)
Формула (6) называется уравнением Бэлмана (уравне-
ние динамического программирования)
Выводы: (из уравнения (6))
Уравнение (6) позволяет в реккурентной форме вы-
вычислить управление, шаг за шагом, от точки N