рефераты по менеджменту

Теории управления

Страница
19

случайного процесса, который он фильтрует.

2) Фильтр Калмана оптимален для реального процесса только

в том случае, если реальный процесс близок к модели,

которую мы используем.

Многомерный фильтр Калмана

(1) , где - текущее время, -

- вектор (столбики)

A - матрица k´k, H - матрица m´k.

- вектор, - шум наблюдения

; - шум динамической системы.

Запишем (1) в скалярной форме. covx=Q, covh=P.

Многомерный фильтр Калмана для модели (1) :

,

где - вес, - невязка.

; где - единичная матрица

=Г ; Начальные условия задаются из аппри-

Г ; орных условий . - транспони-

рованная матрица (сопряженная).

Траекторные изменения

Часто требуется получить оценку траектории летательного

аппарата. Летательный аппарат может быть зафиксирован с

помощью радиолокатора, либо некоторой навигационной сис-

темой.

Летательный аппарат рассматривается в некоторой сис-

теме координат :

Если известны точно все 9 коор-

Z динат (см.ниже), то можно точ-

л.а. но навести ракету. Для определе-

ния всех координат существуют

р X траекторные фильтры, которые

строятся на базе фильтра Калмана.

Y

Траекторный фильтр 2-го порядка

(1) ; a<1

Первые две строки (1) - это модель, последняя строка -

- наблюдение.

Составим многомерный фильтр Калмана , для этого по мо-

дели (1) составим многомерную модель.

;

(2) ;

; ; H=[1,0]

Из формулы (2) имеем :

; ;

; ;

Траекторный фильтр 3-го порядка

(4) , первые две строки - модель,

последняя строка - наблюдения

; ; ; ;

H = [1,0,0] ;

; ;

Теория нелинейной фильтрации

Здесь нелинейные модели записываются в виде :

(1) ; здесь : верхняя функция - нелиней-

ная регрессия, нижняя - уравнение наблюдений.

Функция генерирует на любом интервале неко-

торый случайный процесс . Это есть модель неко-

торого случайного процесса, более богатая, чем все преды-

дущие модели.

Уравнение наблюдений : наблюдается не сама , а не-

которая функция j();наблюдения ведутся на фоне шумов

- шум нелинейной динамической системы (шум модели)

1) Требуется найти оценку , такую, чтобы :

(2)

Формула (2) - критерий минимума среднеквадратической

ошибки.

2) Требуется получить реккурентную оценку, такую же как в

фильтре Калмана.

В чистом виде получить оптимальную оценку нельзя, есть

лишь приближенные решения, когда функции f(x) и j(x) -

- линеаризуются.

Тейлоровская линеаризация - используется ряд Тейлора,

линейная часть (1-я, 2-го

члена). ( j(x) и f(x) - имеют непрерывные первые про-

изводные).

Разложение в ряд Тейлора в точке

где - оценка, которую мы еще не знаем, но собираем-

ся находить.

Эти линеаризованные функции подставим в (1) и получим

линейную систему :

Перейти на страницу номер:
 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16  17  18  19  20  21  22  23  24  25  26  27  28  29 

© 2010-2024 рефераты по менеджменту