рефераты по менеджменту

Теории управления

Страница
22

до 1 (из будущего в прошлое) получить минимиза-

цию (6) на каждом шаге. Получить . Значе-

ния управления фактически получаются методом пе-

ребора. Оптимальная траектория ) неиз-

вестна до самого последнего шага.

Если задача имеет большую размерность, то

сложность при вычислении очень большая. Если

вводить динамические системы (т.е. модели), то

можно значительно упростить метод нахождения оп-

тимального управления. Т.е. получить управление

в замкнутом виде (в виде некоторой формулы).

Синтез оптимального управления для марковских динамичес-

ких систем.

(1) ; ; ; где -

- управление; - шум динамической системы.

Управление должно менять - траекторию, и изменять ее так, чтобы минимизировать средний критерий качества,

причем управляется динамическая система не по всем коор-

динатам.

- управляемый случайный процесс.

Динамическая система, сама как таковая, не наблюдается, а

наблюдается j()(нелинейно преобразованная фазовая пере-

менная) с шумом. В этом случае говорят, что динамическая система ненаблюдаема напрямую. Для того, чтобы сделать ее

наблюдаемой необходимо использовать теорию нелинейной

фильтрации (см. предыдущие лекции).

В этом случае получаем оценку нелинейной динамической

системы в условиях линеаризации по Тейлору :

(2)

Синтез оптимального управления используя (2) проведем применив квадратичный критерий качества, причем управле-

ние динамической системой будем вести к некоторому этало-

ну, т.е. задано : , i=1,2 .n

Критерий оптимизации

(3) ;

где || - норма, .

Риск складывается из двух слагаемых :

1-е слагаемое : Это есть квадрат отклонения траектории от

эталона. Оно должно быть минимизировано с

учетом формулы (2).

2-е слагаемое : Это есть сумма с квадратом самого управ-

ления (некоторая сила) должны быть мини-

мизированны (так должно быть всегда)

Минимизация (3) - это достаточно сложная задача вариаци-

онного исчисления (просто взять здесь производную по ‘u’

не удается).

Для минимизации (3) используем уравнение Бэлмана :

(4)

В формуле (4) минимизируя шаг за шагом получим :

(5) ; где - матрица

Выводы : (к формуле (5))

Оптимальное управление (5) реализуется с ис-

пользованием линейной оценки динамической сис-

темы, и это управление вставляется в формулу :

Если упростить критерий и привести его к виду (3’):

(3’)

то минимизация дает оптимальное управление эталона:

(6)

Оптимальное управление пропорционально разности меж-

ду экстраполированной оценкой и эталоном, т.о. полу-

чим :

(7)

Оценка (7) подставляется в (6). Со временем, при ми-

нимизации в этом случае сама оценка устремляется к

эталону.

Пример синтеза динамической системы управления частотой

генератора

Общая постановка :

Пусть имеется некоторая эталонная траектория

(1) , где - шум

Если эталон защищен, то его фильтруют.

Имеется управляемая динамическая система :

Управляемая динамическая система - фаза генератора или

траектория, которая должна подстроиться под эталон.

(2) ; шума часто нет, поэтому

им пренебрегают. Пусть

(3)

Рассмотрим более сложную модель фазы рассматриваемого ге-

нератора.

(4)

Считаем, что в (1),(3) уход фазы очень медленный,т.е.

. Используя нелинейную функцию оценка эталона:

(4’)

В (4) решение уравнения относительно имеет вид :

(5) ; с<1.

Выше было доказано, используя уравнение Бэлмана,

что :

(6)

Структурная схема реализации оптимального управления под-

стройки частоты к эталону

(4’) (5’)

шум

эталонный нелиненый Решающее Подстраи-

генератор фильтр устройство ваемый ге- вых

Перейти на страницу номер:
 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16  17  18  19  20  21  22  23  24  25  26  27  28  29 

© 2010-2025 рефераты по менеджменту