Фильтр
Калмана
;
x(t)- ненаблюдаемый случайный процесс
y(t)- наблюдаемый случайный процесс
y(t) На входе фильтр Калма-
на использует наблюде-
ния и начальные усло-
вия. На выходе фильтра
x(t) получается исходный
процесс x(t).
Фильтрация медленных процессов
x(t)
При а=0.999,
,
есть медленный процесс, тогда
, это следует из формулы
(3).В этом случае -
t - экстраполяция (прогноз),т.е.
прошлая и текущая оценки поч-
ти одинаковы. В таком фильтре Калмана почти полностью иг-
норируются наблюдения. При оценке ситуации фильтр Калмана
не доверяет наблюдениям, а доверяет лишь прошлой оценке.
Это годится для процессов, которые можно легко предска-
зать.
Фильтрация быстрых процессов
- большая величина (>1); .
x(t)
динамическая ошибка
t
Тогда , в этом случае (оценка) равна самим наблю-
дениям. Это значит, что фильтр Калмана не доверяет прош-
лым оценкам.
Вывод : Фильтр Калмана минимизирует и флуктуационную и
динамическую ошибку.
Динамической ошибкой называется разница между оценкой и
истинным значением процесса.
-=динамическая ошибка.
Флуктуационная ошибка - тоже, но за счет шума.
При быстром процессе шумы фактически не фильтруются.
Невязка входит в фильтр Калмана и выполняет роль
корректирующего члена, который в формуле (3)
учитывает ситуацию, которую дают наблюдения.
Оценка на шаге ‘n’ равна экстраполированной оценке
плюс некоторый корректирующий член, который есть невязка,
которая взята с весом . (Корректирующий член учитывает
наблюдения на шаге ‘n’) Вес учитывает апприорную дина-
мику системы (модели).
Вывод (по одномерному фильтру Калмана):
1) Фильтр Калмана можно построить в виде реккурентного
алгоритма только в том случае, если имеется модель