рефераты по менеджменту

Теории управления

Страница
14

Утверждение доказано.

Вывод: На вход схемы рис.1 идет некоррелированный слу-

чайный процесс , а следовательно независимый.

(если процесс гауссовский и некоррелированный, то

он независимый, для других процессов это неверно)

В природе наиболее часто встречается гауссовский

случайный процесс. На выходе схемы - зависимый

коррелированный марковский процесс, у которого

плотность факторизуется по условным плотностям.

- не факторизуется

- факторизуется

Процесс (1) называется односвязный марковский

процесс.

Замечание: Процесс (1) получен при дискретизации непре-

рывного линейного диф. уравнения 1-го порядка.

без учета стохастической правой час-

ти

На сетке дискретного времени имеем :

; - получаем обычную ( не

стохастическую) авторегрессию.

Tc+1=a

Авторегрессия 2-го порядка - двухсвязный процесс

(1)

Коэффициенты называются коэффициентами регрес-

сии. Уравнение (1) без стохастической правой части легко

получается из диф. уравнения 2-го порядка. Уравнение (1)

реализует генератор марковского процесса, который называ-

ется двухсвязным в зависимости от входного процесса .

генератор

марковского рис.2

двухсвязного

процесса

На вход генератора действует белый шум. На выходе - двух

связный марковский процесс.

g(f)

белый шум

0 f f

В зависимости от коэффициентов ны выходе будут раз-

личные процессы. Процесс (1) получается из линейного диф.

уравнения 2-го порядка, если это диф. уравнение рассмат-

ривать на временной сетке (дискретна во времени).

Известно, что диф. уравнение 2-го порядка имеет реше-

ние в виде комплексной экспоненты, если корни характерис-

тического уравнения комплексные, аналогично для некоторых

значений коэффициентов , процесс авторегрессии будет

иметь вид стохастической синусоиды.

Генератор двухсвязного марковского процесса

|¾¾| |¾¾|

T - период дискретизации

Изменение по синусоиде называется синусоидальный тренд.

Марковский процесс 2-го порядка более богатый, чем 1-го,

с помощью него можно моделировать более сложные процессы.

Авторегрессия m-го порядка

(2)

- возбуждающий белый шум.

Перейти на страницу номер:
 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16  17  18  19  20  21  22  23  24  25  26  27  28  29 

© 2010-2025 рефераты по менеджменту