Утверждение доказано.
Вывод: На вход схемы рис.1 идет некоррелированный слу-
чайный процесс , а следовательно независимый.
(если процесс гауссовский и некоррелированный, то
он независимый, для других процессов это неверно)
В природе наиболее часто встречается гауссовский
случайный процесс. На выходе схемы - зависимый
коррелированный марковский процесс, у которого
плотность факторизуется по условным плотностям.
- не факторизуется
- факторизуется
Процесс (1) называется односвязный марковский
процесс.
Замечание: Процесс (1) получен при дискретизации непре-
рывного линейного диф. уравнения 1-го порядка.
без учета стохастической правой час-
ти
На сетке дискретного времени имеем :
; - получаем обычную ( не
стохастическую) авторегрессию.
Tc+1=a
Авторегрессия 2-го порядка - двухсвязный процесс
(1)
Коэффициенты называются коэффициентами регрес-
сии. Уравнение (1) без стохастической правой части легко
получается из диф. уравнения 2-го порядка. Уравнение (1)
реализует генератор марковского процесса, который называ-
ется двухсвязным в зависимости от входного процесса .
генератор
марковского рис.2
двухсвязного
процесса
На вход генератора действует белый шум. На выходе - двух
связный марковский процесс.
g(f)
белый шум
0 f f
В зависимости от коэффициентов ны выходе будут раз-
личные процессы. Процесс (1) получается из линейного диф.
уравнения 2-го порядка, если это диф. уравнение рассмат-
ривать на временной сетке (дискретна во времени).
Известно, что диф. уравнение 2-го порядка имеет реше-
ние в виде комплексной экспоненты, если корни характерис-
тического уравнения комплексные, аналогично для некоторых
значений коэффициентов , процесс авторегрессии будет
иметь вид стохастической синусоиды.
Генератор двухсвязного марковского процесса
|¾¾| |¾¾|
T - период дискретизации
Изменение по синусоиде называется синусоидальный тренд.
Марковский процесс 2-го порядка более богатый, чем 1-го,
с помощью него можно моделировать более сложные процессы.
Авторегрессия m-го порядка
(2)
- возбуждающий белый шум.