рефераты по менеджменту

Теории управления

Страница
3

ющее скорость, ускорение.

Передаточная функция линейной системы

От дифференциального уравнения (1) можно перейти к линей-

ной системе, т.е. к некоторому четырехполюснику.

Вх W(p) Вых

Этот четырехполюсник можно создать на элементной базе или

смоделировать на ЭВМ.

От дифференциального уравнения (1) к W(p) можно перейти

двумя путями - используя символический метод и 2-е прео-

бразование Лапласа.

Сивмолический метод Хиви Сайда.

Применив символический метод к (1) получим :

(3)

Формула (3) представляет собой отношение двух полиномов -

описание передаточной функции.

Использование преобразования Лапласа

- преобразование Лапласа, p=jw

Если мы применим преобразование Лапласа к левой части (1)

и учитывая, что , получим :

(4)

X(p) Y(p)

W(p)

Если правая часть передаточной функции простейшая -

, то воздействие обычное. Передаточ-

ная функция будет иметь вид :

(5) , где знамена-

тель дроби есть характеристическое уравне-

ние.

Пример : Дифференциальное уравнение 2-го порядка описы-

вается передаточной функцией :

(6)

Для нахождения решения дифференциального уравнения снача-

ла необходимо решить следующее уравнение :

Известно, что дифференциальное уравнение 2-го порядка

имеет решение в виде комплексной экспоненты или действий

над ней. (Это зависит от корней характеристического урав-

нения). Если корни комплексные, тогда решение будет :

(7) wt+wt)

Если корни ±a + jw решение будет (7)¢

(7) и (7)’ - решение в виде нарастающей или затухающей синусоиды, либо обычной синусоиды, если a=0.

Устойчивость линейных систем

Линейная система полностью описывается передаточной функ-

цией, которая представляет собой :

в комплескной плоскости

p=s+jw . Эти полиномы получены из дифференциальных урав-

нений путем преобразования Лапласа.

Ставится проблема: как исследовать систему с помощью W(p)

Оказывается, что это проще сделать чем исследовать диффе-

ренциальные уравнения. Исследование по W(p) производится с помощью анализа полюсов и нулей.

Полюсом называется то значение корня уравнения в знаменателе, при котором Q(p)=0.

Количество корней определяется степенью полинома. Если

корни комплексно-сопряженные, то в точке, где Q()=0,

W(p)=¥ - полюс.

Нулями W(p) называются точки на комплексной плоскости,

где полином P(p)=0.

Количество нулей определяется порядком поли-

нома.

jw

s > 0 полюсы

сопряж. пара ®

s > 0

- полюсы (корни характеристического урав-

нения). Если корни комплексные, то они сопряженные.

Выводы :

1. Если корни характеристического уравнения Q(p)

находятся в левой полуплоскости , то система ус-

тойчива. (wt+j) - решение для комплексных

корней.

2. Если s >0 , то решение будет (wt+j).

Система неустойчива.

Расположение нулей определяет корректирующие свойства системы, т.е. оказывают воздействие на переходной процесс

Если нули в левой полуплоскости, то такая система называется минимально фазовой.

Если нули в правой полуплоскости - нелинейно фазовая

система.

Если полюсы на мнимой оси, т.е. s=0, то система нахо-

Перейти на страницу номер:
 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16  17  18  19  20  21  22  23  24  25  26  27  28  29 

© 2010-2024 рефераты по менеджменту