(2)
Коэффициенты a,b,c,d находятся после подстановки.
и имеют произвольное распределение.
Будем использовать метод наименьших квадратов для на-
хождения оценок .
; ;
Выпишем эмпирический риск :
r - функционал.
После линеаризации :
производная из r берется легко
Продифференцировав и воспользовавшись методом индукции
получаем :
(3)
; - задано
Выводы :
1. В связи с тем, что начальная точка разложения
в ряд Тейлора функции j(x) была выбрана в точ-
ке , то несмотря на линеаризацию, урав-
нение (3) получилось как нелинейное и оно по-
хоже на уравнение (1) модели.
2. В отличие от фильтра Калмана, в , при рек-
курентном его вычислении входит - оценка
‘x’ на первом шаге. Коэффициент усиления можно
вычислить заранее за ‘n’ шагов (в фильтре Кал-
мана). Но здесь этого сделать нельзя. Сущест-
вует так называемая обратная связь.
Пример нелинейной фильтрации :
;
T - период колебания
t - период дискретизации
t - текущее время
- фаза гармонического колебания с амплитудой равной 1
процесс наблюдается на фоне шума
- дискретная частота;
(4)
t
Т
Отношение сигнал/шум может быть меньше 1. Требуется получить оценку фазы, такую, чтобы разница в квадрате
была минимальной.
. Из (3) получаем :
(5)
Перемножим и пренебрежем 2й гармоникой :
(6) - ФАПЧ
(5) - ФНЧ, фильтрует 2-ю гармонику полностью(раз-
ностное уравнение)
Структурная схема ФАП
- на вход
вх
¬
a