- неустойчивая система
n
Нелинейные динамические системы описываются дифференци-
альными уравнениями :
(1) , где - вектор, ,
Если линейные дифференциальные уравнения имеют решения
(экспоненциальные), то для нелинейных дифференциальных
уравнений нет общих решений (за редким исключением), но
все реальные динамические системы нелинейны, некоторые
из них нельзя линеаризировать, как быть ?
Выход : 1) Там,где возможно, делается линеаризация правой
части уравнения (1).
Линеаризация - замена нелинейной функции на линейную.
(2) f(x,t)=A(t)x + B(t) + S(x,t)
S(x,t) - мало, им можно принебречь.
Если правая часть (1) не зависит от времени, то система
называется автономной
Линеаризация используется,как правило, для проверки
устойчивости системы. Для исследования свойств нелиней-
ных динамических систем, обычно используются качественные
и численные методы решения нелинейных дифференциальных уравнений. Теория нелинейных уравнений часто называется
теорией нелинейных колебаний.
Пример : Нелинейной динамической системы уравнений Вандер
Поля.
- нелинейность.
= const
Дифференциальное уравнение называется нелинейным, если
оно нелинейно относительно разыскиваемой переменной (са-
мой переменной или ее производной) (нелинейность из-за
квадрата)
Требуется найти решение x(t) .
Существуют численные методы решения таких дифференциаль-
ных уравнений ( численные методы рассматриваются на сет-
ке с шагом ) . Решение получается не непрерывное , а
дискретное.
Численные методы описыва-
t ются в книге: Эльсгольц
‘Теория дифференциальных
уравнений и вариационное
исчисление’.
U
Численный метод Эйлера ( численный метод)
, ;
(5)
Численный метод предназначен для решения не-
линейных дифференциальных уравнений.
Берется из апприорных (начальных условий),
подставляется в правую часть уравнения (5) и
т.д. Это называется реккурентностью.
Качественная теория решения нелинейных диффе-
ренциальных уравнений (в приложении к нелинейным систе-
мам)
В отличие от численного метода (Метод Эйлера), который
дает решение в 1й точке ( не дает траекторию (нужно де-
лать 1000 точек, чтобы получить траекторию)).
Пуан Каре в 19 веке дал качественную теорию решения диф-
ференциальных уравнений, она используется для решения не-
линейных дифференциальных уравнений в виде некоторого фа-
зового портрета (некоторый графический материал, по ко-
торому можно анализировать траекторию движения динамичес-