рефераты по менеджменту

Теория экономического прогнозирования

Страница
10

ŷt+1=f(x), или; (2.2)

ŷt+1=f(x1, x2,…, xn).

Однопараметрические методы следует использовать при кратко­срочном (менее одного года) прогнозирования показателей, изменяющихся еженедельно или ежемесячно. Многопараметрические оправдывают себя для средне- и долгосрочного прогнозирования.

да нет да нет

Нет

Инструмент

прогноза

Скользящие и

экспоненциаль-

ные средние, ав-

торегрессия

да нет да

Рис.2.2.Схема выбора статистического метода прогнозирования

Выбор конкретного параметрического метода прогнозирования, кроме того, зависит от характера исходной статистической базы. В качест­ве исходных данных могут быть взяты выборочные наблюдения и динами­ческие ряды. В первом случае в качестве инструмента прогноза применя­ется регрессия. Значительно чаще, чем случайная выборка, информацион­ной базой для прогноза являются динамические ряды.

Тогда в качестве инструментов прогноза выступают тренды, авто­регрессия, смешанная авторегрессия и т.п. Выбор адекватного подхода за­висит от того, обнаружены ли экзогенные факторы, влияющие на значение зависимой переменной или нет, влияют ли на зависимую переменную предшествующие значения этой же переменной и т.д. В целом процесс вы­бора конкретного метода статистического параметрического прогнозиро­вания показан на рис. 2.2. [39].

Методы экстраполяции сводятся к обработке имеющихся данных об объекте прогнозирования за прошлое время и распространению обнару­женной в прошлом тенденции на будущее.

Методы моделирования — наиболее сложный метод прогнозирова­ния, состоящий из разнообразных подходов к прогнозированию сложных систем, процессов и явлений. Эти методы могут пересекаться и с эксперт­ными методами.

Экстраполяция трендов

Наиболее распространенными из группы математических методов являются методы прогнозной экстраполяции. Временной ряд при экстра­поляции представляется в виде суммы детерминированной (неслучайной) составляющей, называемой трендом, и стохастической (случайной) со­ставляющей, отражающей случайные колебания или шумы процесса.

Прогнозную экстраполяцию можно разбить на два этапа.

• Выбор оптимального вида функции, описывающей ретроспектив­ный ряд данных. Выбору математической функции для описания тренда предшествует преобразование исходных данных с использованием сгла­живания и аналитического выравнивания динамического ряда.

• Расчет коэффициентов (параметров) функции, выбранной для экст­раполяции.

Для оценки коэффициентов чаще остальных используется метод наименьших квадратов (МНК).

Сущность МНК состоит в отыскании коэффициентов модели тренда, минимизирующих ее отклонение от исходного временного ряда:

S = ∑(yt - ŷ)2 → min, (2.3)

где ŷ, - расчетные (теоретические) значения тренда;

у — фактические значения ретроспективного ряда;

n — число наблюдений.

Подбор модели в каждом конкретном случае осуществляется по це­лому статистически ряду критериев (дисперсии, корреляционному отно­шению и др.). Кроме того, для выбора зависимости

ŷt=f(t)

существует несколько подходов. Это метод последовательных разностей, метод характеристик прироста, визуальный (глазомерный) выбор формы. Расчет оценок прироста показателя, дополненный визуальным выбором взаимосвязи, уменьшает риск неправильного выбора модели для прогнози­рования. В частности, могут быть рекомендованы следующие аппрокси­мирующие зависимости:

∆ Y / ∆ t = const → ŷt =a0 + a1 t, (2.4)

∆ ln y / ∆ t = const → ŷt = a0 ta, (2.5)

∆ ln y / ∆ ln t = const → ŷt = a0 tt1, (2.6)

∆ Y2 / ∆ X2 = const → ŷt = a0 + a1 t + a2 t2, (2.7)

∆ (t / y) / ∆ t = const → ŷt = t / (a0 + a1 t). (2.8)

В Приложении 1 показаны графические зависимости, позволяющие осуществлять визуальный выбор формы зависимости прогнозируемого по­казателя от фактора времени, а в Приложении 2 - системы нормальных уравнений, применяемые для оценки параметров полиномов невысоких степеней.

Для выявления более четкой тенденции уровни, нанесенные на гра­фик, можно сгладить (элиминировать) с помощью трех приемов:

• метода технического выравнивания - когда на графике визуально (на глаз) проводится равнодействующая линия, отражающая на взгляд ис­следователя тенденцию развития;

• метода механического сглаживания - расчет скользящих и экспо­ненциальных средних;

• метода аналитического выравнивания - построение тренда.

Преимущество трендовой модели в более высокой степени надежно­сти. Кроме того, она позволяет экономически интерпретировать параметры уравнения тренда и достаточно наглядно изображает тенденцию и откло­нения от нее на графике.

В рыночной ситуации можно порекомендовать конкретные виды функций, наиболее пригодные для экстраполяции [29].

Спрос на ряд непродовольственных товаров может быть описан сте­пенной функцией или экспонентой (особенно на активных этапах жизнен­ного цикла товаров). Общие закономерности спроса отражаются кривой Гомперца. При изучении влияния фактора времени на спрос может быть использована логистическая (сигмоидальная) кривая. Процесс затухания роста спроса по мере перехода населения к группам населения с более вы­соким доходом отражается полулогарифмической кривой.

В развитии рынка как единого экономического пространства (как и в развитии локальных рынков) могут проявиться определенная повторяе­мость, цикличность, обусловленная как внутренними свойствами рынка, так и внешними причинами.

Перейти на страницу номер:
 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16  17  18  19  20  21  22  23  24  25  26 

© 2010-2025 рефераты по менеджменту