рефераты по менеджменту

Теория экономического прогнозирования

Страница
19

В прогнозировании случай совершенного прогноза достигается крайне редко, поэтому проблема верификации прогнозной модели является одной из важнейших в прогностике. Степень совершенства прогнозов вы­ражают через различные измерители точности прогнозирования. Точность точечного прогноза в момент f, определяется разностью между прогнозом Р, и фактическим значением Fh прогнозируемого показателя в этот момент времени. Отдельный точечный прогноз не определяет точность конкрет­ной процедуры прогнозирования в целом, то есть потребуется некоторая выборка {(Pj, fj)}, на основе которой рассчитывается значение некоторого измерителя точности прогнозирования.

Важность проблемы точности прогнозирования определяет важность анализа различных ее измерителей. В настоящее время нет достаточно полного исследования всевозможных критериев точности, что затрудняет оценивание возможностей различных моделей и опыта их применения в прикладных работах по прогнозированию конкретных процессов [10].

Для измерения точности прогнозирования можно использовать лю­бой коэффициент парной корреляции между последовательностями про­гнозных и фактических значений. Классический критерий точности про­гнозирования - коэффициент корреляции Пирсона.

Максимальное значение r = 1 достигается при наличии линейной связи

(3.1)

между Р и F, т.е. когда существуют такие а0 и а/>0, что Р = oq + at F.

Однако при а0 £ 0 и а, = 1 прогноз не будет совершенным, хотя кор­реляция полная и положительная; только при Р = F коэффициент корреля­ции может характеризовать совершенный прогноз.

Коэффициент ранговой корреляции Спирмэна также может быть ис­пользован в качестве измерителя точности прогнозирования. Для этого вычисляются ранги {x} и {у} элементов соответствующих последователь­ностей {PJ и {Ft}. Очевидно, что

(3.2)

Если несколько элементов из Pi или Ft имеют одинаковые ранги, то им определяется ранг, равный среднему арифметическому значений мест элементов в данной ранжировке. В этом случае последнее соотношение останется верным. Вычисляются корректирующие множители для связей соответственно для последовательностей xi и уi :

(3.3)

где г,- и /, равно числу повторений i-го ранга в соответствующих по­следовательностях. Вычисляют сумму квадратов разностей рангов

(3.4)

Если Tf или Ту равно нулю, то коэффициент ранговой корреляции Спирмэна равен:

(3.5)

Коэффициент ранговой корреляции р позволяет характеризовать ка­чественную сторону последовательности прогнозов {Р/j, а именно способ­ность предсказывать точки поворота. Коэффициент ранговой корреляции можно рассматривать как дополнительный измеритель точности прогнози­рования при Pi=Fi и г, близким к 1, так как критерий р инвариантен отно­сительно линейной вариации, причем р=1 прогноз может быть далеко не совершенным, так как для этого достаточно лишь совпадения рангов.

В качестве измерителей точности прогнозирования могут быть ис­пользованы и другие коэффициенты парной корреляции, например коэф­фициент ранговой корреляции Кендэлла. Однако для характеристики ко­эффициентов парной корреляции как некоторого класса измерителей точ­ности прогнозирования достаточно провести анализ этих двух наиболее часто используемых коэффициентов, чтобы выделить общие для этого класса свойства. Во-первых, инвариантность относительно линейной ва­риации, а во-вторых, полная корреляция еще fie определяют совершенный прогноз. Еще одним важным свойством коэффициентов парной корреля­ции является возможность проверки их на значимость, так как определены соответствующие законы распределения этих статистик. Например, для коэффициента ранговой корреляции Спирмэна значимость проверяется с п-2 степенями свободы по следующей t-статистике:

(3.6)

Наиболее распространенными оценками точности прогнозирования также являются средняя ошибка аппроксимации

(3.7)

и средняя квадратическая ошибка прогнозов

(3.8)

Точность прогнозирования тем выше, чем меньше значения е или S соответственно. Совершенный прогноз достигается при e=S=0.

Одним из исследователей проблем экономического прогнозирова­ния, Г. Тейлом [10], предложен в качестве меры качества прогнозов коэф­фициент расхождения V (или коэффициент несоответствия), числителем которого является среднеквадратическая ошибка прогноза, а знаменатель равен квадратному корню из среднего квадрата реализации:

(3.9)

Если У=0, то прогноз абсолютно точен (случай «идеального» прогнозирования). Если F=l, то это означает, что прогноз близок к простой (и наивной) экстраполяции. Если У>1, то прогноз дает худший результат, чем предположение о неизменности тенденций исследуемого явления.

Коэффициент расхождения может быть использован при сопостав­лении качества прогнозов, получаемых на основе различных методов и моделей. В этом его несомненное достоинство. Величина V поддается разложению на составляющие (частные коэффициенты расхождения), харак­теризующие влияние ряда факторов (это достигается разложением числи­теля, представляющего собой средний квадрат ошибки прогноза).

В некоторых случаях более важное значение имеют распознающие способности моделей прогнозирования, особенно при краткосрочном про­гнозировании. Например, при прогнозировании выполнения месячных планов предприятий отрасли по особо учитываемой номенклатуре в начале месяца в первую очередь интерес представляет более точная оценка воз­можности выполнения плана, чем прогнозная информация о величине от­клонения от плана. В данном случае целесообразно использовать следую­щую меру точности прогнозирования:

(3.10)

где q - число подтвержденных прогнозов; р - число неподтвержденных прогнозов.

Если £~\, то имеет место случай «идеального» прогнозирования.

Таким образом, измерители точности прогнозирования по отноше­нию к инвариантности относительно линейной вариации делятся на инва­риантные и не инвариантные. Инвариантные измерители (S и коэффициен­ты парной корреляции), хотя и не позволяют сравнивать точность прогно­зирования различных процессов, могут использоваться для определения точности прогнозирования различных последовательностей прогнозных значений {Pi} при фиксированной последовательности {Ft}. Например, по­добная ситуация возникает при моделировании, когда необходимо выби­рать между несколькими моделями прогнозирования, генерирующими со­ответствующие последовательности {Ft}. Инвариантные измерители могут быть проверены на статистическую значимость, то есть с определенной доверительной вероятностью конкретное значение измерителя является обоснованным. Однако особый интерес при построении моделей прогно­зирования имеет критерий Г. Тейла, так как позволяет определить, в чем состоит расхождение: имеет место дрейф среднего или дрейф дисперсии. С другой стороны, критерий У не является инвариантным, и есть возмож­ность оценивать применимость модели для совокупности различных про­гнозируемых процессов в целом. Например, для прогнозирования по одной модели поведения отдельных предприятий или отрасли в целом.

Перейти на страницу номер:
 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16  17  18  19  20  21  22  23  24  25  26 

© 2010-2024 рефераты по менеджменту