рефераты по менеджменту

Основы системного анализа

Страница
6

Согласно логике системного анализа, когда определена и выстроена взаимосвязанная совокупность задач реализации проекта (можно сказать, и это будет достаточно строго – система задач), начинается следующий этап конструирования системы – исследование условий реализации модели.

Естественно, любая модель системы может быть реализована в практике лишь при наличии определенных условий.

Покажем на примере системы образования.

Естественно, любая модель образовательной системы может быть реализована в практике лишь при наличии определенных условий: кадровых, мотивационных, материально-технических, научно-методических, финансовых, организационных, нормативно-правовых, информационных.

К чести директивных органов следует отметить, что в последние годы вопросам условий реализации образовательных реформ и их подобий стало уделяться гораздо больше внимания, точно также как и технологической подготовке реализации образовательных проектов: созданию необходимых учебников, методических разработок переподготовке учителей и т.д. В былые же времена уже через полгода после выхода очередного постановления необходимо было отчитаться перед ЦК КПСС, что школы, ПТУ и т.п. «перешли на новое содержание образования».

Модель и оригинал. Различия. Конечность, упрощенность, приближенность

Соответствие между моделью и действительностью можно выразить следующими принципами:

1. Конечность.

Всякие реальные объекты как часть реального мира бесконечны по своим свойствам и связям с другими объектами. Однако, если иметь в виду наши возможности по познанию, то здесь мы ограничены своими собственными ресурсами - число нервных клеток мозга, число действий, которые можем выполнить в единицу времени, само время, в течение которого мы можем решать какую-то задачу; ограничены внешние ресурсы, которые мы можем вовлечь в процесс своей деятельности, т.е. необходимо познавать бесконечный мир конечными средствами. Все модели конечны. Абстрактные модели конечны изначально - они сразу наделяются фиксированным числом свойств. Реальные модели конечны в том смысле, что из бесконечного множества их свойств выбираются и используются лишь некоторые, подобные интересующим нас свойствами объекта-оригинала. Модель подобна оригиналу в конечном числе отношений.

2. Упрощенность.

Конечность моделей делает их упрощенность неизбежной, но в человеческой практике эта упрощенность является допустимой, т.к. для любой цели оказывается достаточным, неполное, упрощенное отображение действительности. Для конкретных целей такое упрощение является и необходимым, т.к. позволяет выявить главные эффекты и свойства оригинала (физические абстракции - идеальный газ, абсолютное черное тело, .).

Вынужденное упрощение модели - необходимость оперирования с ней - ресурсное упрощение.

Еще один аспект: из двух моделей, описывающих с одинаковой точностью некоторый объект, ближе к оригиналу (к истинной его природе) оказывается та, которая проще.

3. Приближенность моделей.

С этим термином связывается количественное различие модели и оригинала (качественные различия связаны с терминами конечность и упрощенность). Это количественное различие есть всегда и само по себе не является ни большим, ни малым, его мера вводится соотнесением этого различия с целью моделирования (часы - модель времени).

4. Адекватность.

Адекватна та модель, с помощью которой успешно достигается поставленная цель. Это не равносильно понятию полноты, точности, правильности точности модели. Модель Птолемея адекватна (в смысле точности описания движения планет). Адекватная, но ложная модель (успешное врачевание с помощью заклинаний духов). Иногда удается ввести некоторую меру адекватности. Тогда можно рассматривать вопросы об идентификации модели (т.е. нахождение в данном классе наиболее адекватной) об устойчивости моделей, об их адаптации.

Сходство модели и оригинала. Адекватность модели. Истинность моделей. Сочетание истинности и ложности

Важнейшим понятием при экономико-математическом моделировании, как и при всяком моделировании, является понятие адекватности модели, т. е. соответствия модели моделируемому объекту или процессу. Адекватность модели - в какой-то мере условное понятие, так как полного соответствия модели реальному объекту быть не может, что характерно и для экономико-математического моделирования. При моделировании имеется в виду не просто адекватность, но соответствие по тем свойствам, которые считаются существенными для исследования. Проверка адекватности экономико-математических моделей является весьма серьезной проблемой, тем более, что ее осложняет трудность измерения экономических величин. Однако без такой проверки применение результатов моделирования в управленческих решениях может не только оказаться мало полезным, но и принести существенный вред.

Имея в виду именно теоретические соображения и методы, лежащие в основе построения модели, можно ставить вопросы о том, на сколько веpно данная модель отражает объект и насколько полно она его отpажает. (В процессе моделирования выделяются специальные этапы – этап верификации модели и оценка ее адекватности). В таком случае возникает мысль о сравнимости любого созданного человеком предмета с аналогичными пpиpодными объектами и об истинности этого предмета. Но это имеет смысл лишь в том случае, если подобные пpедметы создаются со специальной целью изобpазить, скопиpовать, воспpоизвести опpеделенные чеpты естественного пpедмета.

Таким обpазом, можно говоpить о том, истинность пpисуща матеpиальным моделям:- в силу связи их с опpеделенными знаниями;- в силу наличия (или отсутствия) изомоpфизма ее стpуктуpы со стpуктуpой моделиpуемого пpоцесса или явления; в силу отношения модели к моделируемому объекту, которое делает ее частью познавательного процесса и позволяет решать определенные познавательные задачи.

И в этом отношении материальная модель является гносеологически вторичной, выступает как элемент гносеологического отражения.

Динамика модели. Процесс моделирования. Причины невозможности полной алгоритмизации процесса моделирования

На входе и выходе имеем зависимости параметров X и Y от времени t. Задача состоит в определении черного ящика.

Допустим, что на вход системы, до этого находившейся в нулевых начальных условиях, подали единичный сигнал X(t). Если на выходе будет наблюдаться экспоненциальный сигнал, то это система первого порядка. Для ее описания достаточно одной производной, а в решении модели будет присутствовать один интеграл. Так как один интеграл "всегда порождает" одну экспоненту, два интеграла - две экспоненты. Чтобы определить, является ли кривая экспонентой, в каждой точке проводится касательная до пересечения с линией установившегося уровня. В любой точке T должна быть постоянной величиной. Величина T характеризует инерционность системы (память). При малой величине T система слабо зависит от предыстории и вход мгновенно заставляет измениться выход. При большой величине T система, медленно реагирует на входной сигнал, а при очень большой T - система неизменна.

Перейти на страницу номер:
 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16  17  18  19  20 

© 2010-2024 рефераты по менеджменту