Следующая ступень развития связана с именем А.А. Богданова (настоящая фамилия Малиновский). Первый том его книги Всеобщая организационная наука (тектология) вышел в 1911 г., а в 1925 г. третий том. Идея Богданова состояла в том, что все объекты и процессы имеют определенный уровень организованности. Тектология должна изучать общие закономерности организаций для всех уровней. Он отмечает, что уровень организации тем выше, чем больше свойства целого отличаются от простой суммы свойств его частей.
По настоящему изучение теории систем началось под влиянием необходимости построение сложных технических систем преимущественно военного назначения. Были выделены достаточные средства и получены существенные результаты.
Следующий этап в развитии системных представлений связан с именем австрийского биолога Л. Берталанфи. Он пытался создать общую теорию систем любой природы на основе структурного сходства законов различных дисциплин.
Современное состояние теории систем связано с исследованиями известного бельгийского ученого Ильи Романовича Пригожина лауреата Нобелевской премии 1977 года. Исследуя термодинамику неравновесных физических систем, он понял, что обнаруженные им закономерности относятся к системам любой природы. Его основные результаты связаны с самоорганизацией систем. В переломные моменты или точки бифуркации принципиально невозможно предсказать станет система более или менее организованной.
Моделирование представляет собой один из основных методов познания, является формой отражения действительности и заключается в выяснении или воспроизведении тех или иных свойств реальных объектов, предметов и явлений с помощью других объектов, процессов, явлений, либо с помощью абстрактного описания в виде изображения, плана, карты, совокупности уравнений, алгоритмов и программ.
Возможности моделирования, то есть перенос результатов, полученных в ходе построения и исследования модели, на оригинал основаны на том, что модель в определенном смысле отображает (воспроизводит, моделирует, описывает, имитирует) некоторые интересующие исследователя черты объекта.
Замена одного объекта (процесса или явления) другим, но сохраняющим все существенные свойства исходного объекта (процесса или явления), называется моделированием, а сам заменяющий объект называется моделью исходного объекта
Можно выделить следующие классы моделей.
Материальные модели
Общая черта, присущая этим моделям, состоит в том, что они копируют исходный объект. Они, как правило, делаются из совсем иного, зачастую более дешевого, материала, чем исходный объект. Размеры моделей также могут сильно отличаться от исходного объекта в ту или другую сторону.
Информационные модели
Модель, представляющая объект, процесс или явление набором параметров и связей между ними, называется информационной моделью. Вскрыть связи между параметрами информационной модели — это зачастую едва ли не самая сложная часть в построении модели, возникающая после того, как определены ее параметры. Информационные модели одного и того же объекта, предназначенные для разных целей, могут быть совершенно различными. Например, информационная модель человека может быть представлена в виде словесного портрета, фотографии, сведениями, занесенными в медицинскую карточку или картотеку отдела кадров по месту его работы. Класс информационных моделей широк. Сюда входят словесные (вербальные) модели, базы данных, диаграммы и схемы, чертежи и рисунки, математические модели и др. Информационная модель, в которой параметры и зависимости между ними выражены в математической форме, называется математической моделью.
Например, известное уравнение S=vt, где S — расстояние, а v и t — соответственно скорость и время, представляет собой модель равномерного движения, выраженную в математической форме. (Привести другие примеры математических моделей)
Быстрое развитие компьютерных технологий способствует и быстрому развитию и совершенствованию средств и способов информационного моделирования; решение задач на основе информационных моделей (компьютерное моделирование) — одна из важнейших сфер применения современных компьютеров. Предметом компьютерного моделирования могут быть: экономическая деятельность фирмы или банка, промышленное предприятие, информационно-вычислительная сеть, технологический процесс, любой реальный объект или процесс, например процесс инфляции, и вообще - любая Сложная Система.
Можно с уверенностью сказать, что большая часть моделей, которыми пользуется человек для решения жизненных задач, представляет собой некоторую совокупность элементов и связей между ними. Такие модели принято называть системами, а общие методы построения системных моделей — системным подходом. Основы системного подхода и заложил в своих трудах Л. фон Берталанфи. В системах элементы, ее составляющие, нельзя рассматривать изолированно. Их суммарный вклад в функционирование системы в целом обусловлен взаимодействием элементов между собой.
Одной из проблем, с которой сталкиваются почти всегда при проведении системного анализа, является проблема эксперимента в системе или над системой. Очень редко это разрешено моральными законами или законами безопасности, но сплошь и рядом связано с материальными затратами и (или) значительными потерями информации.
Опыт всей человеческой деятельности учит — в таких ситуациях надо экспериментировать не над объектом, интересующим нас предметом или системой, а над их моделями. Под этим термином надо понимать не обязательно модель физическую, т. е. копию объекта в уменьшенном или увеличенном виде. Физическое моделирование очень редко применимо в системах, хоть как то связанных с людьми. В частности в социальных системах (в том числе — экономических) приходится прибегать к математическому моделированию.
Еще одно важное обстоятельство приходится учитывать при математическом моделировании. Стремление к простым, элементарным моделям и вызванное этим игнорирование ряда факторов может сделать модель неадекватной реальному объекту, грубо говоря — сделать ее неправдивой. Снова таки, без активного взаимодействия с технологами, специалистами в области законов функционирования систем данного типа, при системном анализе не обойтись.
В системах экономических приходится прибегать большей частью к математическому моделированию, правда в специфическом виде — с использованием не только количественных, но и качественных, а также логических показателей.
Из хорошо себя зарекомендовавших на практике можно упомянуть модели: межотраслевого баланса; роста; планирования экономики; прогностические; равновесия и ряд других.
Завершая вопрос о моделировании при выполнении системного анализа, резонно поставить вопрос о соответствии используемых моделей реальности.
Это соответствие или адекватность могут быть очевидными или даже экспериментально проверенными для отдельных элементов системы. Но уже для подсистем, а тем более системы в целом существует возможность серьезной методической ошибки, связанная с объективной невозможность оценить адекватность модели большой системы на логическом уровне.