рефераты по менеджменту

Основы системного анализа

Страница
7

Звено первого порядка обладает двумя параметрами:

1) инерционность - T

2) коэффициент усиления

Введем понятие передаточной функции как модели динамической системы. По определению передаточная функция - это отношение выхода ко входу

Передаточная функция звена первого порядка имеет вид .

Тогда, используя определение передаточной функции, имеем , где "p" - значок производной ( ).

Далее получим:

В разностном виде уравнение можно записать как (Yi+1 - Yi)*T+Yi*dt = k*Xi*dt. Или выразив настоящее через прошедшее Yi+1 = А* Xi +В* Yi. Здесь А и В весовые коэффициенты. А указывает на вес компоненты Х, определяющей влияние внешнего мира на систему, В указывает на вес Y, определяющей память системы, влияние на ее поведение истории.

В частности, если В=0, то Yi+1 = А* Xi и мы имеем дело с безинерционной системой, мгновенно реагирующей на входной сигнал Y=k*X и увеличивающей его в k раз. Если В=0.5, то нетрудно получить, что при постоянном входном сигнале Х, Yi+1 = А* Xi +0.5* Yi = А* Xi +0.5( А* Xi-1 +В* Yi-1) = . = А*(1+0.5+0.52+ .+0.5n)*Хi-n+0.5n+1*Yi-n = 2*A*Xi-n = k*Xi-n или, изображая на графике, получим затухающую экспоненту. Y стремится к значению входного сигнала X, умноженному на коэффициент усиления k.

Если еще усилить влияние прошлого B=1, то система начнет интегрировать саму себя (выход подан на вход системы)

Yi+1 = А* Xi + Yi добавляя все время входной сигнал, что соответствует экспоненциальному неограниченному росту выходного сигнала. По смыслу это соответствует положительной обратной связи. При B=-1, имеем модель Yi+1 = А* Xi - Yi по смыслу соответствующую отрицательной обратной связи. При определении модели требуется найти неизвестные коэффициенты k и T.

Рассмотрим звено второго порядка.

Звено второго порядка имеет три параметра.

Характеристика: плавный выход из нуля, точка перегиба и бесконечное продвижение к установившемуся состоянию.

Модель - это материальный или мысленно представляемый объект, замещающий в процессе изучения объект-оригинал, и сохраняющий значимые для данного исследования типичные его черты. Процесс построения модели называется моделированием.

Процесс моделирования состоит из трех стадий - формализации (переход от реального объекта к модели), моделирования (исследование и преобразования модели), интерпретации (перевод результатов моделирования в область реальности).

Модель модели. Первое определение модели. Второе определение модели

Модель - объект или описание объекта, системы для замещения (при определенных условиях предложениях, гипотезах) одной системы (т.е. оригинала) другой системы для изучения оригинала или воспроизведения его каких - либо свойств. Модель - результат отображения одной структуры на другую.

Модели, если отвлечься от областей, сфер их применения, бывают трех типов: познавательные, прагматические и инструментальные.

Познавательная модель - форма организации и представления знаний, средство соединение новых и старых знаний. Познавательная модель, как правило, подгоняется под реальность и является теоретической моделью.

Прагматическая модель - средство организации практических действий, рабочего представления целей системы для ее управления. Реальность в них подгоняется под некоторую прагматическую модель. Это, как правило, прикладные модели.

Инструментальная модель - является средством построения, исследования и/или использования прагматических и/или познавательных моделей.

Познавательные отражают существующие, а прагматические - хоть и не существующие, но желаемые и, возможно, исполнимые отношения и связи.

По уровню, "глубине" моделирования модели бывают эмпирические - на основе эмпирических фактов, зависимостей, теоретические - на основе математических описаний и смешанные, полуэмпирические - использующие эмпирические зависимости и математические описания.

Математическая модель М описывающая ситему S (x1,x2, .,xn; R), имеет вид: М=(z1,z2, .,zm; Q), где ziÎZ, i=1,2, .,n, Q, R - множества отношений над X - множеством входных, выходных сигналов и состояний системы и Z - множеством описаний, представлений элементов и подмножеств X, соответственно.

Основные требования к модели: наглядность построения; обозримость основных его свойств и отношений; доступность ее для исследования или воспроизведения; простота исследования, воспроизведения; сохранение информации, содержавшиеся в оригинале (с точностью рассматриваемых при построении модели гипотез) и получение новой информации.

Проблема моделирования состоит из трех задач: построение модели (эта задача менее формализуема и конструктивна, в том смысле, что нет алгоритма для построения моделей); исследование модели (эта задача более формализуема, имеются методы исследования различных классов моделей); использование модели (конструктивная и конкретизируемая задача).

Модель М называется статической, если среди xi нет временного параметра t. Статическая модель в каждый момент времени дает лишь "фотографию" сиcтемы, ее срез.

Модель - динамическая, если среди xi есть временной параметр, т.е. она отображает систему (процессы в системе) во времени.

Модель - дискретная, если она описывает поведение системы только в дискретные моменты времени.

Модель - непрерывная, если она описывает поведение системы для всех моментов времени из некоторого промежутка времени.

Модель - имитационная, если она предназначена для испытания или изучения, проигрывания возможных путей развития и поведения объекта путем варьирования некоторых или всех параметров xi модели М.

Модель - детерминированная, если каждому входному набору параметров соответствует вполне определенный и однозначно определяемый набор выходных параметров; в противном случае - модель недетерминированная, стохастическая (вероятностная).

Можно говорить о различных режимах использования моделей - об имитационном режиме, о стохастическом режиме и т. д.

Перейти на страницу номер:
 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16  17  18  19  20 

© 2010-2024 рефераты по менеджменту