Большинство специалистов по обработке экспериментальных данных сходятся в том, что разнообразные задачи анализа информации могут быть сведены к трем: классификации исходных данных, выбору информативных признаков, идентификации неизвестных наблюдений.
Схема информационных преобразований данных в классификационной задаче приведена на рис.1.
В общем случае эмпирические данные могут быть сведены в таблицу . Используя различные модели , лежащие в основе методов классификации, исследователь преобразует описание таблицы в вид адекватный этим моделям. В рамках геометрической модели таблицу можно представить в виде совокупности “векторов – строк” (объектов) в признаковом пространстве . Структура “векторов – строк” меняется в зависимости от моделей описания данных . В качестве описаний могут выступать матрицы близости, сходства, подобия.
Рис.1
Классический подход к оценке информативности параметров исходного описания данных в задаче классификации сводится к следующей процедуре:
- по всей совокупности параметров в рамках конкретного решающего правила оценивается ошибка классификации ;
- из исходной совокупности параметров
изымается параметр и повторно оценивается ошибка классификации ;
- путем сравнения этих ошибок и определения их разности :
выносится суждение о роли параметра в классификационной задаче. Так, если > 0, то параметр является “вредным” для классификации. Если < 0, то параметр – “полезен”, а, если =0, то “бесполезен”. Такой подход определяет необходимость последовательного перебора всех параметров, а также их возможных сочетаний, что влечет за собой значительные временные затраты.
Определение: принятие решения ("выбор") есть действие над множеством альтернатив, в результате которого исходное множество альтернатив сужается, т.е. происходит его редукция.
Выбор является действием, придающим всей деятельности целенаправленность. Именно через акты выбора реализуется подчиненность всей деятельности определенной цели или совокупности взаимосвязанных целей.
Принятие решений как снятие неопределенности (информационный подход).
Процесс получения информации можно рассматривать как уменьшение неопределенности в результате приема сигнала, а количество информации – как количественную меру степени снятия неопределенности.
Но в результате выбора некоторого подмножества альтернатив из множества, т.е. в результате принятия решения, происходит тоже самое (уменьшение неопределенности).
Это значит, что каждый выбор, каждое решение порождает определенное количество информации, а значит может быть описано в терминах теории информации.
К настоящему моменту сложилось три основных языка описания задач выбора. Самым простым, наиболее развитым является критериальный язык. Второй, более общий язык, на котором описывается выбор, - это язык
бинарных отношений. Основные предположения этого языка сводятся к следующему:
- отдельная альтернатива не оценивается, т.е. критериальная функция не вводится;
- для каждой пары альтернатив можно установить, что одна из них либо предпочтительнее другой, либо они равноценны или не сравнимы;
- отношения предпочтения внутри любой пары альтернатив не зависит от остальных альтернатив.
Бинарные отношения могут быть заданы через описание пар, с помощью матрицы предложений, через граф предпочтений или сечелиями.
Третьим языком описания выбора является язык функций выбора. Он описывает выбор как операцию над произвольным множеством альтернатив, которая ставит этому множеству в соответствие некоторое его подмножество.
Такое соответствие двух множеств без их поэлементного соответствия значительно расширяет смысл термина “функция”.
Таким образом, в настоящее время известно большое количество разнообразных методов ПР и различных подходов к их классификации. При использовании разных методов решения задачи можно получить прямо противоположные результаты при одной и той же исходной информации. В связи с этим возникает проблема выбора метода (методов), подходящих для решения конкретной задачи принятия решений.
Множественность задач принятия решений связана с тем, что каждая компонента ситуации, в которой осуществляется принятие решений, может реализовываться в качественно различных вариантах
Критериальный язык принятия решений.
Об одном и том же явлении можно говорить на различных языках различной степени общности и адекватности. К настоящему времени сложились три основных языка описания выбора.
Самым простым, наиболее развитым и наиболее популярным является критериальный язык
Название этого языка связано с основным предположением, состоящим в том, что каждую отдельно взятую альтернативу можно оценить некоторым конкретным (одним) числом, после чего сравнение альтернатив сводится к сравнению соответствующих им чисел.
Пусть, например, {X} – множество альтернатив, а x – некоторая определенная альтернатива, принадлежащая этому множеству: xX. Тогда считается, что для всех x может быть задана функция q(x), которая называется критерием (критерием качества, целевой функцией, функцией предпочтения, функцией полезности и т.п.), обладающая тем свойством, что если альтернатива x1 предпочтительнее x2 (обозначается: x1 > x2), то q(x1)>q(x2).
При этом выбор сводится к отысканию альтернативы с наибольшим значением критериальной функции.
Однако на практике использование лишь одного критерия для сравнения степени предпочтительности альтернатив оказывается неоправданным упрощением, так как более подробное рассмотрение альтернатив приводит к необходимости оценивать их не по одному, а по многим критериям, которые могут иметь различную природу и качественно отличаться друг от друга.