(7)
где , ,. Здесь векторное соотношение предполагает выполнение равенств при . Принимая во внимание выбранную нами экстремальную стратегию обслуживания , имеем:
Для изучения вероятностных свойств метки остановимся на некоторых свойствах условных распределений величин и . Полагаем что в этой модели при фиксированных значениях метки случайные величиныи независимы и их условные распределения при любом и при удовлетворяют соотношениям:
; (8.1) (8.2)
(9)
где - целая часть величины , а , - средняя интенсивность обслуживания заявок по потоку если случайная среда на интервале находится в состоянии , здесь - интенсивность пуассоновского поступления заявок по потоку , , , - параметры распределения Бартлетта, - целая часть величины .
6. Марковское свойство компоненты.
Итак, мы определили все компоненты нашей модели: входные потоки, алгоритм управления, потоки насыщения и экстремальную стратегию механизма обслуживания. В соответствии со структурой анализируемой системы управления 3 конфликтными потоками требований, максимальный интерес представляет исследование процессов обслуживания по потокам и . Ключевое свойство дискретной компоненты процесса можно сформулировать в виде следующей теоремы:
Теорема: Последовательности , и при заданном распределении вектора являются марковскими.
Доказательство: Докажем правильность утверждения для последовательности. Сообразно определению, данная последовательность будет марковской, если выполнено равенство
Где
Применяя формулу полной вероятности и принятые в данной модели основные свойства ее случайных элементов, получим:
для правой части доказываемого равенства из тех же соображений получим
Т.е. доказываемое равенство имеет место. Стало быть, случайная последовательность образует цепь Маркова с бесконечным счетным числом состояний.
Аналогично доказывается марковость последовательностей и .
7. Рекуррентные формулы для одномерных распределений дискретной компоненты маркированного точечного процесса .
Исследуем свойства одномерных распределений
Здесь начальное распределение считается заданным. Получим рекурентные соотношения вида , где - бесконечномерная матрица переходных вероятностей за один шаг процесса . Подробно рассмотрим вероятностные свойства последовательностей и . Из (7) нетрудно получить следующие, реккурентные по соотношения для этих последовательностей: