рефераты по менеджменту

Модель управления конфликтными потоками в классе алгоритмов с упреждением при влиянии случайной среды на структуру входных потоков и загрузку системы

Страница
6

Покажем, что не содержит других состояний, кроме отмеченных. Возьмём, к примеру, состояние где . Тогда по цепочке переходов цепь Маркова перейдёт из существенного состояния в состояние . Следовательно, состояние является существенным и сообщающимся с . Указанный переход возможен с положительной вероятностью, поскольку и . Аналогично доказывается, что возможен переход из или в любое другое состояние, не принадлежащие множеству . Значит . Поскольку состояние достижимо из любого состояния , то множество не является замкнутым, а содержит единственное замкнутое минимальное . Из очевидного неравенства

следует, что все состояния из будут непериодическими (/8/ стр. 408). Лемма доказана.

Лемма 2. При любом начальном распределении векторной цепи Маркова либо для всех :

и в системе не существует стационарного распределения, либо существуют пределы:

такие, что , и всистеме существует стационарное распределение.

Доказательство. Из структуры множества и из того, что следует, что векторный случайный процесс из произвольного состояния с положительной вероятностью, не меньшей, чем , за один шаг может достигнуть множества . Обозначим через вероятность того, что рассматриваемая цепь Маркова исходя из произвольного несущественного состояния когда-либо достигнет некоторого существенного состояния из . Известно, что величины , являются решениями системы уравнений вида (8.6), приведённой в /8/ на стр. 392. Тогда, в силу неравенства и леммы 1, эта система является вполне регулярной и имеет ограниченное решение , . В этом можно убедиться непосредсвенной подстановкой. По теореме 11 из /9/ это решение будет единственным. Отсюда на основании эргодической теоремы в главе 15 из /8/ получим утверждение доказываемой леммы.

Итак, ассимптотическое поведение одномерного распределения случайного векторного процесса при не зависит от начального распределения .

Заключение.

В конце этой (весьма краткой) работы хочется подвести итог того, что нами было уже сделано:

Ø Была дана общая характеристика случайной среды, системы управления, приведена её функциональная схема;

Ø На содержательном уровне дано определение конфликтности и потоков насыщения системы;

Ø Приведено математическое описание составляющих элементов системы и построен маркированный случайный точечный процесс, моделирующий динамическое поведение системы;

Ø Была доказана теорема марковости выделенной дискретной компоненты процесса .

Ø Выведены рекуррентные формулы для одномерных распределений дискретной компоненты маркированного точечного процесса .

Перейти на страницу номер:
 1  2  3  4  5  6 

© 2010-2024 рефераты по менеджменту