рефераты по менеджменту

Построение системного анализа

Страница
3

сij = 1 если αКi ≥ αКj для всех К.

Показатель соответствия рассчитывается для каждой пары объектов еi и еj.

Результаты таких расчётов могут быть представлены в таблице n х n, каждый элемент которой сij есть показатель соответствия предположению, что объект еi предпочтительнее еj

Для осуществления процедуры сравнения необходимо учесть и критерии, противоречащие введённому предложению, что объект еi по крайней мере не хуже объекта еj. С этой целью рассчитывается так называемый показатель несоответствия dij(s). Для его получения необходимо:

1) вычислить разности между оценками объектов αКi и αКj для к из множества Дij и упорядочить полученные отклонения в невозрастающую последовательность;

2) определить показатель несоответствия dij (s), как –ый элемент построенной последовательности.

Очевидно, что такое определение показателя несоответствия, например, для s = 2 эквивалентно исключению из рассмотрения критерия с самым большим несоответствием, для s = 3 – исключению двух критериев с наибольшими несоответствиями и т.д.

Значения показателей Дij несоответствия для всех пар (еi,еj) могут быть представлены в таблице n х n Дij(s).

Принцип сравнения объектов по нескольким критериям

Зафиксируем значение параметра s, затем задаём два числа с – порог соответствия и d – порог несоответствия и говорим, что согласно К критериев и порогов с и d объект еi предпочтительнее еj, если и только если пара (еi,еj) приводит к показателю соответствия сij ≥ с и показателю несоответствия dij (s) ≤ d.

Предпочтение, определённое таким образом удобно представить в виде графа, вершинами которого являются элементы множества Ε ={ еi}, а дуги выражают отношения предпочтения своим направлением от еi к еj, если еi предпочтительнее еj.

Т.е G (c, d, s) = [Ε, U(c, d, s)]

где Ε – множество вершин графа, соответствующее множеству рассматриваемых объектов; U(c, d, s) – множество дуг графа:

дуга (еi,еj)Î U(c, d, s) Û сij ≥ с, dij (s) ≤ d.

Очевидно, что чем меньше требования к значениям с и d, тем богаче дугами соответствующий граф. Однако, сравнение и выбор, проводимые на основе очень слабых требований к с и d могут не отразить реальную ситуацию выбора. Поэтому необходимо последовательно и постепенно ослаблять требования к параметрам c, d, s и анализировать возникающие связи.

Таким образом, для каждой тройки (c, d, s) можно построить U(c, d, s), при этом множество вершин графа Ε может быть разделено на два непересекающихся подмножества Ĕ и (Ε – Ĕ).

Подмножество Ĕ таково, что всякий элемент, не включенный в Ĕ будет превзойдён, по крайней мере, одним элементом, принадлежащим Ĕ. Это свойство называется свойством внешней устойчивости подмножества Ĕ. Другое свойство этого подмножества Ĕ заключается в том, что никакой элемент Ĕ не превосходит другого элемента Ĕ, т.е. элементы Ĕ несравнимы между собой при заданных (c, d, s).

Подмножество вершин графа, которое обладает этими двумя свойствами, называется ядром графа. Подмножество Ĕ может иметь различное число элементов. Если для заданных параметров (c, d, s) ядро включает очень много элементов – это означает, что антагонизм критериев таков, что это не позволяет сравнивать объекты при этих параметрах. Уменьшение требовательности к порогам c, d сократит число элементов Ĕ и обратное – усиление требований к ним влечёт за собой обогащение Ĕ.

В результате исследования поведения графов и их ядер в зависимости от параметров(c, d, s) можно проанализировать небольшое число объектов, среди которых находится и самый хороший объект.

Кроме того, исследование поведения ядер показало, что можно упорядочить объекты множества Ε в некоторую последовательность, благодаря которой каждый объект может быть сравним с другим по своей позиции в этой последовательности. Исследование таблиц Сij и Дij(s) помогут определить, какие из сравниваемых объектов являются «близкими», можно выделить из них почти эквивалентные, образующие циклы и т.д. Таким образом, метод позволяет формализовать выбор одного объекта среди многих.

Пример

На предприятии производится отбор платьев из коллекции для массового пошива. При этом каждое платье оценивают по шести показателям:

Обозначение показателя

Показатель

е1

Трудоёмкость

е2

Удельная прибыль

е3

Инвариантность типа ткани

е4

Инвариантность фурнитуре

е5

Величина охвата сегмента рынка

е6

Соответствие модной тенденции

Эти показатели получили оценки десяти специалистов – экспертов по десятибалльной шкале. Экспертные оценки представлены в таблице 1.1.

Таблица 1.1. Оценки показателей каждым из опрошенных экспертов

Показатели

Эксперты

1

2

3

4

5

6

7

8

9

10

е1

1

9

5

10

7

10

5

5

10

3

е2

3

4

5

8

5

3

8

8

5

7

е3

8

3

2

5

5

5

8

4

5

2

е4

2

6

2

5

10

5

10

9

10

6

е5

10

10

4

8

8

10

10

4

10

5

е6

9

8

3

7

5

4

10

6

8

7

Перейти на страницу номер:
 1  2  3  4  5  6  7  8  9  10  11  12  13  14 

© 2010-2024 рефераты по менеджменту