рефераты по менеджменту

Организация строительства и управление качеством

Страница
18

Расчет продолжительности и всех других параметров потока с использованием матриц рекомендуется выполнять в следующем по­рядке. В середину клеток матрицы, приведенной на рис. 5.9, запи­сывают продолжительности работ бригад на захватках.

Расчет осуществляют в такой последовательности. Сначала в конце каждой графы проставляют продолжительность работы бри­гад Σti(, для чего суммируют продолжительности их работ на всех захватках. Так, для 1-й бригады эта продолжительность равна 8 ед. времени, для 2-й – 12 ед. и т. д.

Далее, в верхний левый угол первой клетки заносят время на­чала работы 1-й бригады на 1 захватке (обычно нуль), а в нижний правый угол—окончание работы бригады, которое равно времени начала работы плюс ее продолжительность.

Так как время окончания работы на I захватке считается нача­лом работы этой бригады на II, то это время без изменений пере­носится в левый верхний угол второй клетки этой же графы (см. рис. 5.9). Суммируя это время с продолжительностью работы на II захватке, определяют время окончания работы. Это время запи­сывают в нижний правый угол второй клетки. Таким образом рас­считывают начала и окончания работ на всех захватках 1-й брига­ды. Дальнейший расчет по графам ведут в зависимости от продол­жительности работы бригад. Если продолжительность работы по­следующей бригады больше продолжительности работы предыду­щей, то расчет ведут сверху вниз, а если меньше, то снизу вверх.

Рис. 5.9. Матрица с результатами расчета разноритмичного потока

Так как общая продолжительность работ 2-й бригады в рас­сматриваемом примере больше продолжительности работ 1-й бри­гады (12>8), то расчет начал и окончаний работ 2-й бригады на захватках начинают сверху, т. е. с момента, когда освободится I захватка. Для этого из нижнего угла первой клетки первой гра­фы время, характеризующее окончания работ на I захватке, пере­носят в левый верхний угол первой клетки второй графы. Далее расчет аналогичен предыдущему.

Так как продолжительность работы 3-й бригады меньше про­должительности работы 2-й бригады (4<12), то расчет начал и окончаний работ 3-й бригады следует вести снизу вверх. Для этого вначале в левый угол последней клетки третьей графы переносят время окончания работ 2-й бригады на последней захватке. Одно­временно это время переносят в правый нижний угол вышележащей клетки, где это время соответствует окончанию работы 3-й бригады на предыдущей захватке. Начало работы бригады на этой захватке определяют как разность между этим временем и продол­жительностью работы бригады на захватке. Аналогичным образом заполняют все клетки матрицы. Цифра в нижнем углу последней клетки матрицы показывает общую продолжительность выполне­ния работ. В нашем примере она равна 20 ед. времени.

После расчетов параметров потока с использованием матрицы целесообразно для наглядности построить циклограмму потока (рис. 5.10).

Расчет параметров неритмичных потоков с использованием мат­риц аналогичен расчету разноритмичных, за исключением того, что в процессе расчетов необходимо определять для каждой пары

Рис. 5.10. Циклограмма разноритмично­го потока, рассчитанного

с использова­нием матрицы

смежных бригад место их критического сближения, которое в отличие от разноритмичных потоков может находиться на любой захватке.

В качестве примера рассчитаем параметры неритмичного потока, информация

о котором представлена в матрице (рис. 5.11). На первом этапе расчета определяют места критических сближений каждой пары смежных бригад (частных потоков). Для этого нахо­дят наибольшую продолжитель­ность выполнения работ на за­хватках этими двумя бригада­ми путем суммирования продолжительностей их работ на захватках при условии, что критическое сближение нахо­дится вначале на I, далее на II и т. д. захватке. Результа­ты суммирования записывают в последнюю строку матрицы в виде столбца. Например, для 1-й и 2-й бригад эти продолжи­тельности равны следующим значениям: при условии, что крити­ческое сближение находится на I захватке—3+1+2+2+2=10;

на II--3+1+2+2+2=10; на 111—3+1+1+2+2=9 и, наконец, на IV --3+1+1+1+2=8. Наибольшее значение из полученных сумм равно 10. Это значит, что критическое сближение двух рас­сматриваемых бригад находится на I и II захватках. Аналогично находят места критических сближений всех других бригад (част­ных потоков).

После определения мест критических сближений расчет начи­нают с тех клеток матрицы, на которых установлено критическое сближение. Сам расчет не отличается от рассмотренного выше для разноритмичного потока.

Циклограмма неритмичного потока, рассчитанного на матрице (рис. 5.11), приведена на рис. 5.12.

Оценку качества запроектированных потоков производят с ис­пользованием различных критериев, к которым относятся: продол- жительность потока; степень совмещения работ; уровень ритмич­ности потребления ресурсов; уровень равномерности строительного

потока.

Критерий продолжительности потока является важнейшим, так как продолжительность оказывает влияние на эффективность строительства.

Рис. 5.11. Матрица с результатами расчета не­ритмичного потока

Оптимизация неритмичных потоков по времени

Продолжительность потока зависит от общей трудоемкости ра­бот, численного состава бригад, а для неритмичного потока также от очередности включения в работу захваток (участков), на кото­рых функционирует поток. Расчеты показывают, что разница меж­ду продолжительностями выполнения работ в неритмичных пото­ках при наименее и наиболее рациональных очередностях включе­ния в работу захваток (участков) достигает 15—20%.

Полный перебор всех возможных вариантов включения в работу захваток (участков), при котором продолжи­тельность потока мини­мальна, практически не­реальная задача, так как число вариантов дости­гает огромных величин— факториал от числа за­хваток (участков). Так, например, только при 12 захватках, на которых

Рис. 5.12. Циклограмма неритмичного пото­ка, рассчитанного с использованием матри­цы

работают бригады, число вариантов достигает 479001600. Поэто­му при организации неритмичных потоков возникла задача в раз-'ютке алгоритма направленного перебора очередностей вклю­чения в работу захваток (участков).

Первый обоснованныйалгоритм направленного перебора пред­ложен в 1954 г. Сущность его заключается в минимизации перио­да развертывания потока, состоящего из двух частных за счет пе­рехода от случайной очередности освоения фронтов работ к упоря­доченной. Упорядоченная очередность достигается тем, что фронты работ для 1-го частного потока располагают в матрице по возрас­танию продолжительности работ, а для 2-го — по убыванию. Для этого рассматривают все строки матрицы, состоящей из двух столбцов (частных потоков), и выявляют работу с меньшей про­должительностью (если их несколько, то дальнейшие действия на­чинают с любой из них). Если эта работа расположена в первом (левом) столбце матрицы, т. е. принадлежит 1-му частному пото­ку, то вся строка с данным и соседним правым элементом перено­сится на первое место формируемой матрицы. Если же работа с минимальной продолжительностью расположена во втором (пра­вом) столбце, т. е. принадлежит 2-му частному потоку, что вся стро­ка с данным и соседним левым элементом переносится на послед­нее место формируемой матрицы. Операция повторяется с оставши­мися строками исходной матрицы до полного ее перестроения.

Перейти на страницу номер:
 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16  17  18  19  20  21  22  23  24  25  26  27 

© 2010-2024 рефераты по менеджменту