Program Evaluation and Review Technique был разработан в 50-ые годы главным образом для упрощения планирования и составления графиков больших и сложных проектов. Метод подразумевал наличие неопределённости, давая возможность разработать рабочий график проекта без точного знания деталей и необходимого времени для всех его составляющих.
Самая известная часть Program Evaluation and Review Technique - это «Сети PERT» - графики соединённых между собой временных линий. PERT предназначен для очень масштабных, единовременных, сложных, нерутинных проектов.
Диаграмма представляет собой множество точек-вершин вместе с соединяющими их ориентированными дугами. Каждая из них как направленный отрезок имеет начало и конец, причем модель содержит только одну из пары симметричных дуг (от вершины 1 к вершине 2 и от вершины 2 к вершине 1). Всякой дуге, рассматриваемой в качестве какой-то работы из числа нужных для осуществления проекта, приписываются определенные количественные характеристики. Это - объемы выделяемых на нее ресурсов и, соответственно, ее ожидаемая продолжительность (длина дуги). Любая вершина интерпретируется как событие завершения работ, представленных дугами, которые входят в нее, и одновременно начала работ, отображаемых дугами, исходящими оттуда. Таким образом, фиксируется что ни к одной из работ нельзя приступить прежде чем будут выполнены все предшествующие ей согласно технологии реализации проекта. Факт начала этого процесса - вершина без входящих, а окончание - без исходящих дуг. Остальные вершины должны иметь и те, и другие. Последовательность дуг, в которой конец каждой предшествующей совпадает с началом последующей, трактуется как путь от отправной вершины к завершающей, а сумма длин таких дуг - как его продолжительность. Обычно начало и конец реализации проекта связаны множеством путей, длины которых различаются. Наибольшая определяет длительность всего этого проекта, минимально возможную при зафиксированных характеристиках дуг графа. Соответствующий путь - критический и в каждый момент времени контролировать нужно состояние именно тех работ, которые «лежат» на нем.
Метод графической оценки и анализа (GERT, англ. Graphical Evaluation and Review Technique) - альтернативный вероятностный метод сетевого планирования, применяется в случаях организации работ, когда последующие задачи могут начинаться после завершения только некоторого числа из предшествующих задач, причём не все задачи, представленные на сетевой модели, должны быть выполнены для завершения проекта. Основу применения метода GERT составляет использование альтернативных сетей, называемых GERT-cетями. Они позволяют более адекватно задавать сложные процессы строительного производства в тех случаях, когда затруднительно или невозможно (по объективным причинам) однозначно определить, какие именно работы и в какой последовательности должны быть выполнены для достижения цели проекта (то есть существует многовариантность реализации проекта). Расчёт GERT-сетей, моделирующих реальные процессы, чрезвычайно сложен, однако программное обеспечение для вычисления сетевых моделей такого типа в настоящее время, к сожалению, не распространено.
Сетью называется конечный граф G(X,Y) , без циклов и петель, ориентированный в одном общем направлении от вершин V, являющимися входами графа, к вершинам W, являющимися выходами.
Сетевое планирование и управление программами включает три основных этапа: структурное планирование, календарное планирование и оперативное управление.
Этап структурного планирования начинается с разбиения программы на четко определенные операции. Затем определяются оценки продолжительности операций и строится сетевая модель (сетевой график, стрелочная диаграмма), каждая дуга (стрелка) которой отображает работу. Вся сетевая модель в целом является графическим представлением взаимосвязей операций программы. Построение сетевой модели на этапе структурного планирования позволяет детально проанализировать все операции и внести улучшения в структуру программы еще до начала ее реализации. Однако еще более существенную роль играет использование сетевой модели для разработки календарного плана выполнения программы.
Конечной целью этапа календарного планирования является построение календарного графика, определяющего моменты начала и окончания каждой операции, а также ее взаимосвязи с другими операциями программы. Кроме того, календарный график должен давать возможность выявлять критические операции (с точки зрения времени), которым необходимо уделять особое внимание, чтобы закончить программу в директивный срок. Что касается некритических операций, то календарный план должен позволять определять их резервы времени, которые можно выгодно использовать при задержке выполнения таких операций или с позиций эффективного использования ресурсов.
Заключительным этапом является оперативное управление процессом реализации программы. Этот этап включает использование сетевой модели и календарного графика для составления периодических отчетов о ходе выполнения программы. Сетевая модель подвергается анализу и в случае необходимости корректируется. В этом случае разрабатывается новый календарный план выполнения остальной части программы.
Полный перебор (или метод «грубой силы» от англ. brute force) - метод решения задачи путем перебора всех возможных вариантов. Сложность полного перебора зависит от количества всех возможных решений задачи. Если пространство решений очень велико, то полный перебор может не дать результатов в течение нескольких лет или даже столетий.
Перебор по всевозможным сочетаниям из k элементов по N, т.е. сначала алгоритм пытается представить V как один из элементов массива S, затем перебираются все возможные пары, затем все возможные тройки и т.д.
Полный перебор практически применим только в задачах малого размера. Напомним, что СПУ с n событиями требует при полном переборе рассмотрения (n-1)!/2 туров в симметричной задаче и (n-1)! путей в несимметричной, а факториал, метод заключается в нахождении наикратчайшего расстояния путём выбора самого короткого (оптимального решения, т.е. min).
Чтобы проводить полный перебор в СПУ, нужно научиться (разумеется, без повторений) генерировать все перестановки заданного числа m элементов. Это можно сделать несколькими способами, но самый распространенный (т.е. предложенных для переборных алгоритмов решения других задач) – это перебор в лексикографическом порядке. При лексикографической форме записи последовательность перестановок P представляется в виде отдельных блоков по (n-1)! элементов в каждом. Если пронумеровать эти блоки от 0 до (n-1), то все перестановки блока j (j = 0, 1, …, n-1) будут начинаться с цифры (j+1).
Предложим перестановку из пяти элементов, обозначенных цифрами 1 5. Лексикографически первой перестановкой является 1-2-3-4-5, второй – 1-2-3-5-4, …, последней – 5-4-3-2-1. Нужно осознать общий алгоритм преобразования любой перестановки в непосредственно следующую.
Правило такое: скажем, дана перестановка 1-3-5-4-2. Нужно двигаться по перестановке справа налево, пока впервые не увидим число, меньшее, чем предыдущее. Это число, Pi-1 надо увеличить, поставив вместо него какое-то число из расположенных правее, от Pi до Pn. Число большее, чем Pi-1, несомненно, найдется, так как Pi-1< Pi . Если есть несколько больших чисел, то, очевидно, надо ставить меньшее из них. Пусть это будет Pj,j>i-1. Затем число Pi-1 и все числа от Pi до Pn, не считая Pj нужно упорядочить по возрастанию.