Q — количество материала, которое необходимо заказать.
S — затраты на размещение одного заказа;
R — точка повторного заказа;
L — период выполнения заказа;
H¾годовые издержки хранения единицы среднего запаса материала. Зачастую затраты на хранение определяются как процент от цены материала, т.е. H = iC, где i — процент от цены С.
DC в правой части уравнения представляет собой стоимость закупки годовой потребности материала; (D/Q)S — годовые затраты на размещение заказов (фактическое количество размешенных заказов D/Q, умноженное на затраты на размещение одного заказа S), а (Q/2)H — годовые издержки хранения (средний запас Q/2, умноженный на годовые издержки хранения одного изделия H).
Рис. 2.2 – Зависимости различных составляющих затрат на создание запасов от размера заказа
Затем для разработки модели управления запасами необходимо определить ту величину заказа Qopt, при которой суммарные затраты минимальны. На рис. 2.2 суммарные затраты достигают минимума в точке, где тангенс угла наклона кривой суммарных годовых затрат равен нулю. Для нахождения точки минимальных затрат возьмем производную от суммарных годовых затрат по Q и приравняем ее к нулю. Для рассматриваемого здесь уравнения эти преобразования будут иметь следующий вид [13]:
TC = DC+S+H;
=0++=0;
Qopt=. (2.4)
Поскольку эта простая модель предполагает, что потребность и время выполнения заказа являются постоянными величинами, резервный (буферный) запас не требуется, и точка повторного заказа, R, определяется как:
R=dav*L, (2.5)
где dav — средняя дневная потребность в материале (постоянная величина);
L — время выполнения заказа в днях (постоянная величина).
В системе управления запасами с фиксированным периодом запас подсчитывается только в определенные моменты времени, например раз в неделю или раз в месяц. Подсчет величины запаса и размещение заказов на периодической основе желательны в ситуациях, когда поставщики с определенной периодичностью навешают своих потребителей и принимают у них заказы на полную номенклатуру своей продукции либо когда покупатели пытаются комбинировать (объединять) заказы для экономии транспортных расходов. Многие фирмы предпочитают модель управления запасами с фиксированным периодом времени, поскольку она облегчает задачу планирования и учета запасов.
Модели с фиксированным периодом времени выдают размеры заказов, разные для различных циклов (в зависимости от нормы потребления). Это, вообще говоря, требует более высокого уровня резервного запаса, чем в системе с фиксированным объемом заказа. Система с фиксированным объемом заказа предполагает непрерывный подсчет наличного запаса, причем заказ размешается сразу же по достижении точки очередного заказа. В отличие от таких систем, в моделях с фиксированным периодом предполагают, что запас подсчитывается только в так называемые контрольные моменты времени. При этом возможно, что исключительно высокое потребление сведет весь запас к нулю сразу же после того, как заказ будет выполнен, и эта ситуация может оставаться незамеченной вплоть до наступления следующего контрольного момента. В таком случае можно оказаться без запаса изделий до поступления очередной партии заказанных изделий (т.е. в течение практически всего контрольного периода Т, плюс время выполнения заказа L). Таким образом, резервный запас должен защищать нас от дефицита изделий не только в течение контрольного периода, но и в течение времени выполнения заказа — с момента размещения заказа до момента получения изделий по этому заказу.
В системе с фиксированным периодом очередные заказы размешаются в контрольные моменты через время Т, а резервный запас, который необходимо иметь, равен zsT+L. В этом случае потребность характеризуется случайным распределением со средним значением dav [13]:
Q=dav(T+L)+zsT+L-I, (2.6)
где q — размер очередного заказа;
Т - число дней между контрольными моментами;
L — время выполнения заказа в днях (с момента размещения заказа до момента получения изделий по этому заказу);
dav — прогнозируемая средняя дневная потребность;
z — число стандартных отклонений для заданного уровня обслуживания;
sT+L — стандартное отклонение потребности в течение контрольного периода и периода выполнения заказа;
I— текущий уровень запаса (включает уже имеющиеся изделия).
Величину z можно получить по Е(z), которое определяется по формуле:
E(z)= dav *Т(1-Р)/ sT+L, (2.7)
где E(z) ― ожидаемая величина дефицита изделий;
Р— требуемый уровень обслуживания, выраженный долей единицы;
dav — средняя дневная потребность;
Т— количество дней;
sT+L — стандартное отклонение потребности в течение контрольного периода и периода выполнения заказа.
Рассмотренные модель с фиксированным объемом заказа и модель с фиксированным периодом времени, основанные на равных исходных посылках, все же имеют две общие характеристики — стоимость изделий остается постоянной при любом объеме заказа; процесс очередного размещение заказа предсказуем, т.е. изделия заказывались и помешались в запас в расчете на то, что потребность сохранится.
В этом разделе будут представлены две другие модели. Первая иллюстрирует изменение величины заказа в случае, когда цена единицы изделия меняется в зависимости от объема заказа. Вторая, называемая однопериодной моделью, или иногда статической моделью, представляет собой задачу, в которой определение размера заказа при каждой закупке требует поиска компромиссного варианта. Для этой модели решение отыскивается на основе анализа предельных показателей.
Модель со ступенчатой (переменной) ценой учитывает то, что в действительности отпускная цена изделия зависит от объема заказа, причем зависимость цены от размера закупки обычно не прямо пропорциональная, а ступенчатая. Оптимальный объем заказа определяют по наименьшим общим затратам на создание запасов для всех значений ЕOQ и Q при которых происходит скачок цены. Для этого составляется таблица, в которой для всех возможных значении объема заказа (все EOQ и размеры закупок Q, при которых установлен скачок цены) рассчитывают все элементы затрат на создание запаса и находят общие затраты на создание запасов. По минимуму общих затрат определяется оптимальный объем закупки. При этом нужно учитывать, что не все значения EOQ имеют смысл, так как могут находиться в диапазонах цен, отличных от тех, по которым они рассчитаны.