3. Построение гистограмм по каждому фактору с целью определения форм распределения случайных наблюдений.
Построение по каждому фактору корреляционных полей, т.е. графическое изображение функций от фактора с целью предварительного определения тесноты и формы связи между функцией и каждым фактором. Примеры корреляционных полей показаны на рис 4.2.
Корреляционные поля построены по исходным статистическим данным X)—Х4 (факторы) и Y (функция). Анализ корреляционных полей показывает, что:
а) между Y и X1 теснота связи слабая, по форме она линейная, обратно пропорциональная;
б) между Y и Х2 теснота связи высокая, по форме она линейная, прямо пропорциональная;
в) между Y и Х3 связи нет, т.к. функцию Y = f(X3) можно провести в любом направлении;
г) между Y и Х4 теснота связи высокая, форма связи — гиперболическая, после линии А—А фактор Х4 на Y уже не оказывает влияния.
4. Составление матрицы исходных данных производится по следующей форме:
№ п.п. |
Y |
X1 |
X2 |
Xn |
Принадлежность строки |
1 |
5,80 |
0,93 |
1,47 |
Цех №1, I квартал 1997г | |
2 |
6,15 |
0,82 |
1,59 |
Цех №1, II квартал 1997г |
и т.д.
В матрицу исходных данных следует включать факторы, имеющие примерно такую форму связи, как Y с X1 и Х2 на рис. 4.2. Фактор Х3 с Y не имеет связи, поэтому этот фактор не следует включать в матрицу, фактор Х4 тоже не следует включать в матрицу, поскольку после линии А—А этот фактор влияния на Y не оказывает. Влияние подобных факторов на Y следует учитывать при помощи коэффициентов, определяемых отдельно для каждого фактора и группы предприятий.
Наши исследования показывают, что к “организационным факторам, имеющим с экономическими показателями гиперболическую форму связи, относятся уровень освоенности продукции в установившемся производстве, программа ее выпуска и др.
5. Ввод информации и решение задачи на ЭВМ.
В экономических исследованиях для многофакторных регрессионных моделей чаще всего приемлемы две формы связи факторов с функцией: линейная и степенная. Для двухфакторных моделей применяются также гиперболическая и параболическая формы связи.
6. Анализ уравнения регрессии и его параметров в соответствии с требованиями, изложенными в табл. 4.3.
7. Составление матрицы исходных данных для окончательной модели и решение ее на ЭВМ. Апробация окончательной модели путем подстановки в нее фактических данных по одной из строк матрицы и сравнение полученного значения функции с ее фактическим значением.
При составлении новых матриц исходных данных из них исключаются поочередно:
а) один из двух факторов, коэффициент частной корреляции между которыми значительно больше коэффициентов парной корреляции между функцией и этими факторами. Например, если между двумя факторами коэффициент частной корреляции ра-
0,95, а коэффициенты парной корреляции между функцией и этими факторами равны 0.18 и 0,73, то первый фактор с коэффициентом парной корреляции, равным 0,18, из матрицы можно исключить;
б) факторы с коэффициентами парной корреляции между ними и функцией менее 0,1;
в) только после соблюдения требований а) и б) исключаются из матрицы факторы, имеющие с функцией обратную, с точки зрения экономической сущности, связь. Например, с повышением сменности работы цеха (фактор) должна расти его годовая производительность (функция). Обратная же зависимость между ними свидетельствует о нерегулярном и недостоверном учете коэффициента сменности, а возможно, и производительности оборудования, либо о неправильной методике расчета этих показателей. Поэтому в этом случае фактор необходимо исключить из матрицы исходных данных и изучать систему учета.
Из матрицы могут быть исключены также отдельные строки по предприятиям (периодам), не отвечающие ранее описанным требованиям.
Параметры окончательного уравнения регрессии должны отвечать требованиям табл. 4.3. Если невозможно этого достигнуть, модель для ранжирования факторов и прогнозирования экономических показателей не может быть использована. Она пригодна только для предварительного отбора факторов.
8. И последнее — ранжирование.
Ранжирование факторов осуществляется по показателю их эластичности. фактору с наибольшим коэффициентом эластичности присваивается первый ранг, и он является важнейшим. Например, если два фактора имеют коэффициенты эластичности, равные 0,35 и 0,58, то второму фактору нужно отдать предпочтение перед первым при распределении ресурсов на улучшение данной функции (при улучшении второго фактора на 1% функция улучшается на 0,58%, а по первому фактору — 0,35%).
Нами проведены специальные исследования зависимостей между элементами затрат и организационными факторами (программа выпуска продукции, уровень ее освоенности, тенденция роста производительности труда). Результаты исследований показали, что эти факторы на -экономические показатели оказывают влияние только в определенных границах по гиперболической форме связи. Поэтому эти факторы не должны включаться в общую многофакторную модель, их влияние на функцию должно учитываться отдельно. Например, себестоимость продукции прогнозируется по формуле
(4.2)
где 3 — прогнозное значение себестоимости продукции, рассчитанное с учетом организационных факторов производства и технических параметров конструкции;
— прогнозное значение себестоимости продукции, рассчитанное по ее техническим параметрам;
— коэффициент, учитывающий влияние на себестоимость изменения программы выпуска нового изделия по сравнению с программой выпуска базового (или группы аналогичных проектируемому) изделия. Для изделии массового выпуска этот коэффициент равен единице;
— коэффициент, учитывающий влияние на себестоимость уровня освоенности конструкции изделия;
— коэффициент, учитывающий закономерность неуклонного роста производительности труда. Он определяется по формуле