рефераты по менеджменту

Методы анализа управленческих решений

Страница
6

3. Построение гистограмм по каждому фактору с целью определения форм распределения случайных наблюдений.

Построение по каждому фактору корреляционных полей, т.е. графическое изображение функций от фактора с целью предварительного определения тесноты и формы связи между функцией и каждым фактором. Примеры корреляционных полей показаны на рис 4.2.

Корреляционные поля построены по исходным статистичес­ким данным X)—Х4 (факторы) и Y (функция). Анализ корреляци­онных полей показывает, что:

а) между Y и X1 теснота связи слабая, по форме она линейная, обратно пропорциональная;

б) между Y и Х2 теснота связи высокая, по форме она линейная, прямо пропорциональная;

в) между Y и Х3 связи нет, т.к. функцию Y = f(X3) можно про­вести в любом направлении;

г) между Y и Х4 теснота связи высокая, форма связи — гипер­болическая, после линии А—А фактор Х4 на Y уже не оказывает влияния.

4. Составление матрицы исходных данных производится по следующей форме:

№ п.п.

Y

X1

X2

Xn

Принадлежность строки

1

5,80

0,93

1,47

 

Цех №1, I квартал 1997г

2

6,15

0,82

1,59

 

Цех №1, II квартал 1997г

и т.д.

В матрицу исходных данных следует включать факторы, имею­щие примерно такую форму связи, как Y с X1 и Х2 на рис. 4.2. Фактор Х3 с Y не имеет связи, поэтому этот фактор не следует включать в матрицу, фактор Х4 тоже не следует включать в матри­цу, поскольку после линии А—А этот фактор влияния на Y не оказывает. Влияние подобных факторов на Y следует учитывать при помощи коэффициентов, определяемых отдельно для каждо­го фактора и группы предприятий.

Наши исследования показывают, что к “организационным фак­торам, имеющим с экономическими показателями гиперболичес­кую форму связи, относятся уровень освоенности продукции в установившемся производстве, программа ее выпуска и др.

5. Ввод информации и решение задачи на ЭВМ.

В экономических исследованиях для многофакторных регрес­сионных моделей чаще всего приемлемы две формы связи факто­ров с функцией: линейная и степенная. Для двухфакторных моде­лей применяются также гиперболическая и параболическая фор­мы связи.

6. Анализ уравнения регрессии и его параметров в соответ­ствии с требованиями, изложенными в табл. 4.3.

7. Составление матрицы исходных данных для окончательной модели и решение ее на ЭВМ. Апробация окончательной модели путем подстановки в нее фактических данных по одной из строк матрицы и сравнение полученного значения функции с ее факти­ческим значением.

При составлении новых матриц исходных данных из них ис­ключаются поочередно:

а) один из двух факторов, коэффициент частной корреляции между которыми значительно больше коэффициентов парной корреляции между функцией и этими факторами. Например, если между двумя факторами коэффициент частной корреляции ра-

0,95, а коэффициенты парной корреляции между функцией и этими факторами равны 0.18 и 0,73, то первый фактор с коэффи­циентом парной корреляции, равным 0,18, из матрицы можно исключить;

б) факторы с коэффициентами парной корреляции между ними и функцией менее 0,1;

в) только после соблюдения требований а) и б) исключаются из матрицы факторы, имеющие с функцией обратную, с точки зре­ния экономической сущности, связь. Например, с повышением сменности работы цеха (фактор) должна расти его годовая произ­водительность (функция). Обратная же зависимость между ними свидетельствует о нерегулярном и недостоверном учете коэффи­циента сменности, а возможно, и производительности оборудова­ния, либо о неправильной методике расчета этих показателей. Поэтому в этом случае фактор необходимо исключить из матри­цы исходных данных и изучать систему учета.

Из матрицы могут быть исключены также отдельные строки по предприятиям (периодам), не отвечающие ранее описанным тре­бованиям.

Параметры окончательного уравнения регрессии должны отве­чать требованиям табл. 4.3. Если невозможно этого достигнуть, модель для ранжирования факторов и прогнозирования экономи­ческих показателей не может быть использована. Она пригодна только для предварительного отбора факторов.

8. И последнее — ранжирование.

Ранжирование факторов осуществляется по показателю их эла­стичности. фактору с наибольшим коэффициентом эластичности присваивается первый ранг, и он является важнейшим. Например, если два фактора имеют коэффициенты эластичности, равные 0,35 и 0,58, то второму фактору нужно отдать предпочтение перед пер­вым при распределении ресурсов на улучшение данной функции (при улучшении второго фактора на 1% функция улучшается на 0,58%, а по первому фактору — 0,35%).

Нами проведены специальные исследования зависимостей меж­ду элементами затрат и организационными факторами (програм­ма выпуска продукции, уровень ее освоенности, тенденция роста производительности труда). Результаты исследований показали, что эти факторы на -экономические показатели оказывают влияние только в определенных границах по гиперболической форме свя­зи. Поэтому эти факторы не должны включаться в общую много­факторную модель, их влияние на функцию должно учитываться отдельно. Например, себестоимость продукции прогнозируется по формуле

(4.2)

где 3 — прогнозное значение себестоимости продукции, рас­считанное с учетом организационных факторов производства и технических параметров конструкции;

— прогнозное значение себестоимости продукции, рас­считанное по ее техническим параметрам;

— коэффициент, учитывающий влияние на себестои­мость изменения программы выпуска нового изделия по сравне­нию с программой выпуска базового (или группы аналогичных проектируемому) изделия. Для изделии массового выпуска этот коэффициент равен единице;

— коэффициент, учитывающий влияние на себесто­имость уровня освоенности конструкции изделия;

— коэффициент, учитывающий закономерность не­уклонного роста производительности труда. Он определяется по формуле

Перейти на страницу номер:
 1  2  3  4  5  6  7  8  9  10  11  12 

© 2010-2025 рефераты по менеджменту