рефераты по менеджменту

Менеджер как основной работник предприятия

Страница
4

Имеется n пунктов производства некоторой продукции (а1, а2, ., аn) и k пунктов ее потребления (b1,b2, ., bk), где ai – объем выпуска продукции i-го пункта производства, bj - объем потребления j-го пункта потребления. Рассматривается наиболее простая, так называемая “закрытая задача”, когда суммарные объемы производства и потребления равны. Пусть cij – затраты на перевозку единицы продукции. Требуется найти наиболее рациональную схему прикрепления поставщиков к потребителям, минимизирующую суммарные затраты по транспортировке продукции. Очевидно, что число альтернативных вариантов здесь может быть очень большим, что исключает применение метода “прямого счета”. Итак необходимо решить следующую задачу:

E E Cg Xg -> min

E Xg = bj E Xg = bj Xg >= 0

Известны различные способы решения этой задачи – распределительный метод потенциалов и др. Как правило, для расчетов применяется ЭВМ.

При проведении анализа в условиях определенности могут успешно применяться методы машинной имитации, предполагающие множественные расчеты на ЭВМ. В этом случае строится имитационная модель объекта или процесса (компьютерная программа), содержащая b-е число факторов и переменных, значения которых в разных комбинациях подвергается варьированию. Таким образом, машинная имитация – это эксперимент, но не в реальных, а в искусственных условиях. По результатам этого эксперимента отбирается один или несколько вариантов, являющихся базовыми для принятия окончательного решения на основе дополнительных формальных и неформальных критериев.

2.2 АНАЛИЗ И ПРИНЯТИЕ УПРАВЛЕНЧЕСКИХ РЕШЕНИЙ В УСЛОВИЯХ РИСКА

Эта ситуация встречается на практике наиболее часто. Здесь пользуются вероятностным подходом, предполагающим прогнозирование возможных исходов и присвоение им вероятностей. При этом пользуются:

а) известными, типовыми ситуациями (типа – вероятность появления герба при бросании монеты равна 0.5);

б) предыдущими распределениями вероятностей (например, из выборочных обследований или статистики предшествующих пересудов известна вероятность появления бракованной детали);

в) субъективными оценками, сделанными аналитиком самостоятельно либо с привлечением группы экспертов.

Последовательность действий аналитика в этом случае такова:

· прогнозируются возможные исходы Ak, k = 1 , 2, ., n;

· каждому исходу присваивается соответствующая вероятность pk, причем

Е рк = 1

· выбирается критерий (например максимизация математического ожидания прибыли);

· выбирается вариант, удовлетворяющий выбранному критерию.

Пример: имеются два объекта инвестирования с одинаковой прогнозной суммой требуемых капитальных вложений. Величина планируемого дохода в каждом случае не определенна и приведена в виде распределения вероятностей:

Проект А

Проект В

Прибыль

Вероятность

Прибыль

Вероятность

3000

0. 10

2000

0 . 10

3500

0 . 20

3000

0 . 20

4000

0 . 40

4000

0 . 35

4500

0 . 20

5000

0 . 25

5000

0 . 10

8000

0 . 10

Тогда математическое ожидание дохода для рассматриваемых проектов будет соответственно равно:

У (Да) = 0.10 * 3000 + . + 0.10 * 5000 = 4000

У (Дб) = 0.10 * 2000 + . + 0.10 * 8000 = 4250

Таким образом проект Б более предпочтителен. Следует, правда, отметить, что этот проект является и относительно более рискованным, поскольку имеет большую вариацию по сравнению с проектом А (размах вариации проекта А – 2000, проекта Б – 6000) .

В более сложных ситуациях в анализе используют так называемый метод построения дерева решений. Логику этого метода рассмотрим на примере.

Пример: управляющему нужно принять решение о целесообразности приобретения станка М1 либо станка М2. Станок М2 более экономичен, что обеспечивает больший доход на единицу продукции, вместе с тем он более дорогой и требует относительно больших накладных расходов:

Постоянные расходы

Операционный доход на единицу продукции

Станок М1

15000

20

Станок М2

21000

24

Процесс принятия решения может быть выполнен в несколько этапов:

Этап 1. Определение цели.

В качестве критерия выбирается максимизация математического ожидания прибыли.

Этап 2. Определение набора возможных действий для рассмотрения и анализа (контролируются лицом, принимающим решение)

Управляющий может выбрать один из двух вариантов:

а1 = {покупка станка М1}

а2 = {покупка станка М2}

Этап 3. Оценка возможных исходов и их вероятностей (носят случайный характер).

Управляющий оценивает возможные варианты годового спроса на продукцию и соответствующие им вероятности следующим образом:

х1 = 1200 единиц с вероятностью 0.4

х2 = 2000 единиц с вероятностью 0.6

Этап 4. Оценка математического ожидания возможного дохода:

Е ( Да ) = 9000 * 0 . 4 + 25000 * 0 . 6 = 18600

Е ( Дб ) = 7800 * 0 . 4 + 27000 * 0 . 6 = 19320

Таким образом, вариант с приобретением станка М2 экономически более целесообразен.

Анализ и принятие управленческих решений в условиях неопределенности

Эта ситуация разработана в теории, однако на практике формализованные алгоритмы анализа применяются достаточно редко. Основная трудность здесь состоит в том, что невозможно оценить вероятности исходов. Основной критерий – максимизация прибыли – здесь не срабатывает, поэтому применяют другие критерии:

Перейти на страницу номер:
 1  2  3  4  5  6  7  8  9 

© 2010-2024 рефераты по менеджменту