умение “читать”блок-схемы.
3) Развивать внимание, память, мыслительные операции, речь, творческие способности, интерес к математике.
Ход урока:
1. Организационный момент.
2. Постановка учебной задачи.
2.1. Задания на развитие внимания.
На доске и на столе у детей двуцветная картинка с числами:
2 |
5 |
8 | ||||||
10 |
4 | |||||||
|
3 |
5 | ||||||
1 |
9 |
6 |
— Что интересного в записанных числах? (Записаны разными цветами; все “красные” числа — четные, а “синие” — нечетные.)
— Какое число лишнее? (10 — круглое, а остальные нет; 10 — двузначное, а остальные однозначные; 5 — повторяется два раза, а остальные — по одному.)
— Закрою число 10. Есть ли лишнее среди остальных чисел? (3 — у него нет пары до 10, а у остальных есть.)
— Найдите сумму всех “красных” чисел и запишите ее в красном квадрате. (30.)
— Найдите сумму всех “синих” чисел и запишите ее в синем квадрате. (23.)
— На сколько 30 больше, чем 23? (На 7.)
— На сколько 23 меньше, чем 30? (Тоже на 7.)
— Каким действием искали? (Вычитанием.)
2.2. Задания на развитие памяти и речи. Актуализация знаний.
а) —Повторите по порядку слова, которые я назову: слагаемое, слагаемое, сумма, уменьшаемое, вычитаемое, разность. (Дети пытаются воспроизвести порядок слов.)
— Компоненты каких действий назвали? (Сложение и вычитание.)
— С каким новым действием мы познакомились? (Умножение.)
— Назовите компоненты умножения. (Множитель, множитель, произведение.)
— Что обозначает первый множитель? (Равные слагаемые в сумме.)
— Что обозначает второй множитель? (Число таких слагаемых.)
Запишите определение умножения.
б) —Рассмотрите записи. Какое задание будете выполнять?
12 + 12 + 12 + 12 + 12
33 + 33 + 33 + 33
а + а + а
(Заменить сумму произведением.)
Что получится? (В первом выражении 5 слагаемых, каждый из которых равен 12, поэтому оно равно
12 • 5. Аналогично — 33 • 4, а • 3)
в) — Назовите обратную операцию. (Заменить произведение суммой.)
— Замените произведение суммой в выражениях: 99 — 2. 8 • 4. Ь • 3. (99 + 99, 8 + 8 + 8 + 8, b+b+b).
г) На доске записаны равенства:
81+81=81–2
21• 3 = 21+22 + 23
44 + 44 + 44 + 44 = 44 + 4
17 + 17-17 + 17-17 = 17 • 5
Учитель рядом с каждым равенством помещает картинки соответственно цыпленка, слоненка, лягушонка и мышонка.
— Зверюшки лесной школы выполняли задание. Правильно ли они его выполнили?
Дети устанавливают, что слоненок, лягушонок и мышонок ошиблись, объясняют, в чем их ошибки.
д) — Сравните выражения:
8 – 5 . 5 – 8 34 – 9… 31 • 2
5 • 6 . 3 • 6 а – 3 . а • 2 + а
(8 • 5 = 5 • 8, так как от перестановки слагаемых сумма не изменяется; 5 • 6 > 3 • 6, так как слева и справа по 6 слагаемых, но слева слагаемые больше; 34 • 9 > 31 — 2. так как слева слагаемых больше и сами слагаемые больше; а • 3 = а • 2 + а, так как слева и справа по 3 слагаемых, равных а.)
— Какое свойство умножения использовали в первом примере? (Переместительное.)
2.3. Постановка проблемы. Целеполагание.
Рассмотрите картинку. Верны ли равенства? Почему? (Верны, так как сумма 5 + 5 + 5= 15. потом в сумме становится на одно слагаемое 5 больше, и сумма увеличивается на 5.)
5 • 3 = 15 5 • 5 = 25
5 • 4 = 20 5 • 6 = 30
— Продолжите эту закономерность направо. (5 • 7 = 35; 5 • 8 = 40 .)
— Продолжите ее теперь налево. (5 • 2 = 10; 5 • 1=5; 5 • 0 = 0.)
— А что означает выражение 5 • 1? 5 • 0? (? Проблема!) Итог обсуждения:
— В нашем примере было бы удобно считать, что 5 • 1 = 5, а 5 • 0 = 0. Однако выражения 5 • 1 и 5 • 0 не имеют смысла. Мы можем условиться считать эти равенства верными. Но для этого надо проверить, не нарушим ли мы переместительное свойство умножения. Итак, цель нашего урока — установить, сможем ли мы считать равенства 5 • 1 = 5 и 5 • 0 = 0 верными? — Проблема урока!
3. “Открытие” детьми нового знания.
1) № 1, стр. 80.
а) — Выполните действия: 1 • 7, 1 • 4, 1 • 5.
Дети решают примеры с комментированием в учебнике-тетради:
1 • 7 = 1 + 1 + 1 + 1 + 1 + 1 + 1 = 7
1 • 4 = 1 + 1 + 1 + 1 = 4
1 • 5 = 1 + 1 + 1 + 1 +1 = 5
— Сделайте вывод: 1 • а — ? (1 • а = а.) Учитель выставляет карточку: 1 • а = а
б) — Имеют ли смысл выражения 7 • 1, 4 • 1, 5 • 1? Почему? (Нет, так как в сумме не может быть одно слагаемое.)
— Чему они должны быть равны, чтобы не нарушалось переместительное свойство умножения? (7 • 1 тоже должно быть равно 7, поэтому 7 • 1 = 7.)
Аналогично рассматриваются 4 • 1 = 4; 5 • 1 = 5.
— Сделайте вывод: а • 1 = ? (а • 1 = а.)
Выставляется карточка: а • 1 = а. Учитель накладывает первую карточку на вторую: а • 1 = 1 • а = а.
— Совпадает наш вывод с тем, что у нас получилось на числовом луче? (Да.)
— Переведите это равенство на русский язык. (При умножении числа на 1 или 1 на число получается то же самое число.)
— Молодцы! Итак, будем считать:
а • 1 = 1 • а = а.
2) Аналогично исследуется случай умножения с 0 в № 4, стр. 80. Вывод — приумножении числа на 0 или 0 на число получается нуль:
а • 0 = 0 • а = 0.
— Сравните оба равенства: что вам напоминают 0 и 1?
Дети высказывают свои версии. Можно обратить их внимание на те образы, которые приведены в учебнике: 1 — “зеркальце”, 0 — “страшный зверь” или “шапка-невидимка”.
Молодцы! Итак, при умножении на 1 получается то же самое число (1 — “зеркальце”), а при умножении на 0 получается 0 (0 — “шапка-невидимка”).