До недавнего времени полимеры создавала только природа. Но в 20-х годах прошлого столетия человек узнал ее секрет и научился синтезировать их самостоятельно. Искусственные полимеры прочно вошли в наш быт под видом таких привычных веществ, как полиэтилен, капрон, нейлон и другие виды пластмасс. Сегодня благодаря своим ценным свойствам пластмассы повсеместно заменяют древесину, металл, стекло. Пластмассы не боятся влаги и едких кислот, не подвержены ржавчине и гнили и к тому же изготавливаются из дешевого углеводородного сырья.
Меняя длину и способы переплетения цепочек-полимеров, можно управлять прочностью и эластичностью пластмасс. Стоит к цепочке добавить еще хотя бы одно звено или ввести небольшое количество примесей — и у полимера появляются новые свойства. Одни пластмассы по прочности сравнимы с самой лучшей сталью, другие эластичнее резины, третьи прозрачны, как хрусталь, но не разбиваются. Одни пластмассы мгновенно разрушаются под действием тепла, другие способны выдерживать очень высокую температуру. Зная все это, ученые на сегодняшний день создали сотни тысяч различных синтетических полимеров.
Отличительным свойством синтетических полимеров до недавнего времени считалось их нулевая электропроводность. Все привычные типы пластмасс являются хорошими диэлектриками благодаря прочным ковалентным связям, образующим макромолекулярные соединения.
Однако эпохальное достижение трех нобелевских лауреатов 2000 года - Алана МакДайармида (США), Алана Хигеру (США) и Хидеки Ширакаве (Японии) – круто изменило общепринятую точку зрения. Этим ученым впервые удалось превратить пластмассу в электрический проводник. Студент Ширакавы как-то по ошибке добавил слишком много катализатора, в результате чего бесцветный пластик вдруг стал отражать свет подобно серебру, и это навело на мысль о том, что он перестал быть изолятором. Дальнейшие исследования привели к открытию полимера с проводимостью, в десятки миллионов раз превосходящей обычный пластик. Это открывает путь к новой электронике ХХI века, основанной на органических материалах. Ведь органические материалы легче и гибче традиционного кремния, им проще придать нужную форму, в том числе и трехмерную.
На проводящих полимерах основана молекулярная электроника. Например, ученые из Аризонского университета создали ограничитель напряжения из семи анилиновых фрагментов. Разрабатываются молекулярные транзисторы, конденсаторы, диоды.
Американская компания Superconnect разработала материал, который в будущем поможет ускорить передачу данных в Интернете в сто раз! Это особый полимер, позволяющий управлять потоками света при помощи других потоков (т.е. чисто фотонный транзистор).
Уже в начале нашего века появились серьезные преграды на пути развития электроники. Один из возможных путей дальнейшего прогресса – разработка миниатюрных интегральных устройств, в которых роль электронов частично или полностью передана фотонам. Это должно привести к созданию вычислительной техники, превосходящей по быстродействию и информационной емкости современные электронные устройства. Для реализации приборов с квантовой связью или устройств оптической обработки информации могут быть использованы квантовые плоскости на основе множества чередующихся сверхтонких (толщиной в один атом) полупроводниковых пленок. Замена электронов на фотоны породило новое направление в электронике – нанофотонику.
Перспективное направление развития нанотехники, отмеченное еще Эриком Дрекслером, – переход, как это ни кажется парадоксальным, от электронных устройств к механическим компьютерам.
Обычный механический компьютер с элементами макроскопического масштаба, разумеется, очень громоздок и работает чрезвычайно медленно. Однако с компонентами размером в несколько атомов такой механический компьютер оказался бы в миллиарды раз компактней современной микроэлектроники. И хотя механические сигналы передаются в 100 тыс. раз медленнее, им нужно было бы «преодолевать» путь в 1 млн. раз меньший, чем электронам в современных микросхемах. Поэтому простой механический нанокомпьютер был бы более быстродействующим.
Прототип такого устройства уже существует. Компанией IBM создана удивительная «многоножка», которая стала первым квантовым коммерческим устройством хранения данных.
Главный инструмент нанотехнолога – его мозг. Получая новую информацию, мы анализируем, систематизируем и осмысливаем ее, и лишь потом ставим вопросы, ищем доказательства, формулируем законы, выдвигаем гипотезы и теории. Поэтому огромную роль в познании природы играют инструменты получения информации о ней, первыми среди которых были наши удивительные органы чувств: глаза, уши, нос – сами по себе сложные устройства, достойные восхищения инженера. А ведь знания о природе не самоцель, а тоже своего рода инструменты, с помощью которых человек решает различные задачи: от постройки дома до полета на Луну. Но научных знаний тоже недостаточно. Чтобы воспользоваться ими, надо создать соответствующую технику, для чего опять-таки необходимы инструменты; сначала ими была просто пара лохматых рук.
Познание природы и развитие инструментов глубоко взаимосвязаны. Чем совершеннее инструменты, тем более точную информацию мы можем получать, тем достовернее наши знания о природе. Так, например, до открытия телескопа человеку были недоступны сведения ни о форме, ни о структуре нашей Галактики. А до изобретения сканирующих микроскопов никто и не подозревал о существовании уникальных углеродных соединений – фуллеренов и нанотрубок. С другой стороны, более совершенное мышление позволяет изобретать более точные инструменты и приборы, порой на порядки превосходящие возможности существующей технологии. Так, многие изобретения величайшего гения Леонардо да Винчи (типа цепного привода или шарикоподшипника) были теоретически вполне работоспособны, однако же не использовались в XVI веке. Для их реализации была необходима высокоточная обработка деталей, которая хоть и не представляет сложности сегодня, но была совершенно нереальна для той эпохи.
Проникнув в невидимый мир атомов и молекул, мы еще острее нуждаемся в развитии инструментов, способных не только обеспечить получение новой информации, но и привести к потрясающему прогрессу во многих областях.
Как бы человек ни гордился своей изобретательностью, все же следует признать, что в основе многих его достижений лежат принципы, так или иначе «подсмотренные» у природы. В частности, речь идет о самом популярном инструменте ученых – микроскопе.
Микроскоп (от греч. “micros”–малый, и “scopeo”–смотреть) – оптический прибор для получения увеличенных изображений объектов, не видимых невооруженным глазом, оказал по истине революционное действие на развитие многих наук, и в особенности, биологии. Увеличение изображения происходит за счет преломления
света, проходящего сквозь стеклянную линзу, способную в зависимости от своей формы фокусировать или рассеивать световой пучок. Самым простым прибором, демонстрирующим это явление, является обыкновенная лупа – плосковыпуклая линза. Один из первых микроскопов сконструирован в 1609-1610 гг. Галилеем. Он состоит из двух систем линз - окулярa и объективa. Объектив, расположенный близко к образцу, создает первое увеличенное изображение объекта, которое еще