Часто ошибочно полагают, что использование каких-то отдельных характеристик распределения вероятностей результата очень просто устраняет трудность выбора наилучшего решения. Например, чаще всего используют математическое ожидание результата; иногда — дисперсию. Однако, как показывает практика, выбор на основе таких характеристик не всегда согласуется с личными представлениями ЛПР о наилучшей альтернативе. В частности, это объясняется также и тем, что, описывая задачи с риском, ЛПР редко использует такие теоретические понятия, как "распределение вероятностей", "случайная величина", "квантиль" и т.п. Вместо них человек обычно оперирует такими малоформализуемыми понятиями, как "шансы на выигрыш", "возможность неудачи", "тяжесть последствий" и др. Он их воспринимает как более привычные, а потому —, и более надежные. Хотелось бы, чтобы правила выбора также использовали подобные простые и понятные ЛПР суждения; чтобы на основе таких суждений можно было отыскивать сначала эффективные, а при необходимости — и наилучшие альтернативы.
«В этой связи хорошо согласуется с данными практики следующая вербальная формулировка принципа стохастического доминирования:тот вариант решения лучше, для которого выше вероятность получения более предпочтительного результата.[3]»
Другими словами, для того чтобы установить, какой ил двух вариантов — а или b — решения лучше, ЛПР прости необходимо последовательно "перебрать" все возможные те кущие значения t результата у и проверить, какая из веро ятностей больше: P(Y(a) ≥ t) или P(Y(b) ≥ t).
Если для всех у = t, например, оказывается, что P(Y(a) ≥ у) ≥ P(Y(b) ≥ у), то, альтернатива b стохастически доминируется. Формальный вид этого правила стохастического доминирования представлен следующим выражением Fa(y) ≤ Fh(y), для всех значений У. Где Fa{y) = P(Y(a) <y) — функция распределения результата У для альтернативы а.
Проверку на доминируемость по выше приведённому правилу технологически эффективно проводить визуально. Для этого следует изобразить графики функций Fa(y) и Fb(y) в одной системе координат и выбрать ту альтернативу, график функции распределения результата для которой лежит геометрически ниже. Если случайный результат Y дискретен и имеет не очень много возможных значений у, то для графической проверки на недоминируемость удобно использовать стандартную лепестковую диаграмму из пакета Excel, которая является аналогом полярной системы координат. В качестве примера в табл.1 представлены значения (в сотых долях) функции Fa(y) распределения непрерывного результата Y(a) для четырех альтернатив.
Таблица 1. Значения функции Fa(y) распределения результатов Y(a)
Альтернативы |
Значения у,(а) результатов Y(a) | |||||||||
У1 |
У2 |
У3 |
У4 |
У5 |
У6 |
У7 |
У8 |
У9 |
У10 | |
а{ |
15 |
40 |
60 |
70 |
80 |
85 |
90 |
95 |
91 |
99 |
а2 |
0 |
0 |
30 |
55 |
70 |
80 |
85 |
90 |
91 |
92 |
аъ |
0 |
5 |
9 |
11 |
18 |
20 |
22 |
27 |
29 |
30 |
a4 |
0 |
0 |
0 |
5 |
12 |
22 |
45 |
70 |
90 |
95 |
Пусть для определенности более предпочтительным для ЛПР является значение результата с большим индексом (т. е. значение у10 предпочтительнее значения у9, которое в свою очередь более предпочтительно, чем у8 и т.д., а значение у1 — наименее предпочтительное).
Альтернатива а доминируется альтернативами а2 , а3 и а4, которые между собой несравнимы по правилу стохастического доминирования, заданного соотношением а <=> Fa(y) < Fh(y).
Таким образом, отношение стохастического доминирования, задаваемое данным выражением, несвязно, так как неравенство в правой части выражения может не выполняться для всех значений результата. Ввиду этого оно обладает достаточно слабой разрешающей способностью и незначительно сокращает объем исходного множества альтернатив. Возможно также применение и более сложных принципов стохастического доминирования.
Последующее сужение множества выбора возможно лишь при использовании дополнительной информации о предпочтительности того или иного решения. Как уже отмечалось, часто в качестве такой информации выступают сведения о предпочтительности в среднем, предпочтительности по уровню гарантии получения результатов или предпочтительности по уровню самого гарантированного результата. Получение от ЛПР подобной информации означает, что лицо, принимающее решения, как бы безразлично к риску (подробнее смысл "безразличия к риску" будет пояснен ниже) и стремится использовать для анализа только объективные характеристики распределения вероятностей.
Теперь обсудим еще один вопрос. А можно ли как-то более строго описать характер отношения ЛПР к стохастическому риску? Оказывается, да. Причем сделать это можно как на качественном уровне (в качественных шкалах), так и на количественном. Методологической базой для ответов на подобные вопросы является теория полезности.