ВВЕДЕНИЕ
Эффективность исследования систем управления во многом определяется выбранными и использованными методами исследования.
Методы исследования представляют собой способы, приемы проведения исследований. Их грамотное применение способствует получению достоверных и полных результатов исследования возникших в организации проблем. Выбор методов исследования, интеграция различных методов при проведении исследования определяется знаниями, опытом и интуицией специалистов, проводящих исследования.
Всю совокупность методов исследования можно разбить на три большие группы: методы, основанные на использовании знаний и интуиции специалистов; методы формализованного представления систем управления (методы формального моделирования исследуемых процессов) и комплексированные методы.
Всю совокупность методов исследования можно разбить на три большие группы: методы, основанные на использовании знаний и интуиции специалистов; методы формализованного представления систем управления (методы формального моделирования исследуемых процессов) и комплексированные методы.
Первая группа — методы, основанные на выявлении и обобщении мнений опытных специалистов-экспертов, использовании их опыта и нетрадиционных подходов к анализу деятельности организации включают: метод «мозговой атаки», метод типа «сценариев», метод экспертных оценок (включая SWOT-анализ), метод типа «Дельфи», методы типа «дерева целей», «деловой игры», морфологические методы и ряд других методов.
Вторая группа — методы формализованного представления систем управления, основанные на использовании математических, экономико-математических методов и моделей исследования систем управления. Среди них можно выделить следующие классы:
аналитические (включают методы классической математики — интегральное исчисление, дифференциальное исчисление, методы поиска экстремумов функций, вариационное исчисление и другие, методы математического программирования, теории игр);
статистические (включают теоретические разделы математики — математическую статистику, теорию вероятностей — и направления прикладной математики, использующие стохастические представления — теорию массового обслуживания, методы статистических испытаний, методы выдвижения и проверки статистических гипотез и другие методы статистического имитационного моделирования);
теоретико-множественные, логические, лингвистические, семиотические представления (разделы дискретной математики, составляющие теоретическую основу разработки разного рода языков моделирования, автоматизации проектирования, информационно-поисковых языков);
графические (включают теорию графов и разного рода графические представления информации типа диаграмм, графиков, гистограмм и т.п.).
Наибольшее распространение в экономике в настоящее время получили
математическое программирование и статистические методы. Правда, для представления статистических данных, для экстраполяции тенденций тех или иных экономических процессов всегда использовались графические представления (графики, диаграммы и т.п.) и элементы теории функций (например, теория производственных функций). Однако целенаправленное применение математики для постановки и анализа задач управления, принятия экономических решений разного рода (распределения работ и ресурсов, загрузки оборудования, организации перевозок и т.п.) началось с внедрения в экономику методов линейного и других видов математического программирования (работы Л. В. Канторовича, В. В. Новожилова, С.А. Соколицына и др.). Привлекательность этих методов для решения формализованных задач, какими обычно являются названные выше и другие экономические задачи на начальном этапе их постановки, объясняется рядом особенностей, отличающих методы математического программирования от методов классической математики.
При стремлении более адекватно отобразить проблемную ситуацию в ряде случаев целесообразно применять статистические методы, с помощью которых на основе выборочного исследования получают статистические закономерности и распространяют их на поведение системы в целом. Такой подход полезен при отображении таких ситуаций, как организация ремонта оборудования, определение степени его износа, настройка и испытание сложных приборов и устройств и т.д. Все более широкое применение находит статистическое имитационное моделирование экономических процессов и ситуаций принятия решений.
В последнее время с развитием средств автоматизации возросло внимание к методам дискретной математики: знание математической логики, математической лингвистики, теории множеств помогает ускорить разработку алгоритмов, языков автоматизации проектирования сложных технических устройств и комплексов, языков моделирования ситуаций принятия решений в организационных системах.
В настоящее время в экономике и организации производства применяются практически все группы методов формализованного представления систем. Для удобства их выбора в реальных условиях на базе математических направлений развиваются прикладные методы и предлагаются их классификации.
К третьей группе относятся комплексированные методы: комбинаторика, ситуационное моделирование, топология, графосемиотика и др. Они сформировались путем интеграции экспертных и формализованных методов.
Схема классификации методов приведена на рис. 1
Рис. 1 - Классификация методов исследования систем управления
В настоящее время известны различные классификации методов формализованного представления систем. В результате этого методы, иногда возникающие независимо, имеют в основном только терминологические различия. В работе приведена наиболее распространенная классификация, в которой выделяют следующие группы методов формализованного представления: аналитические, статистические, теоретико-множественные, логические, лингвистические, семиотические, графические. Общая направленность классификации следующая: каждая последующая группа методов позволяет формализовать задачу, которая не может быть решена в рамках предыдущей группы методов.
Аналитическими называются методы, в которых ряд свойств многомерной, многосвязной системы отображается в n-мерном пространстве одной единственной точкой, совершающей какое-то движение (рис. 2).
Рисунок 2 – Аналитический метод
Это отображение осуществляется либо с помощью функции f [Sx], либо посредством оператора (функционала) F[Sx]. Можно также две или более систем или их частей отобразить точками, и рассматривать взаимодействие этих точек, каждая из которых совершает какое-то движение, имеет свое поведение. Поведение точек и их взаимодействие описывается аналитическими закономерностями.