рефераты по менеджменту

Спонтанное нарушение симметрии

Страница
2

Существует, кроме того, зеркальная симметрия — волчок, закрученный напра­во, ведет себя так же, как закрученный налево, единственная разница в том, что фигуры дви­жения правого волчка будут зеркальным отра­жением фигур левого.

Существуют зеркально асимметричные молекулы, но, если они образу­ются в одинаковых условиях, число левых мо­лекул равно числу правых.

Зеркальная симметрия явлений природы неточная, как и большинство других симмет­рий. В слабых взаимодействиях, ответствен­ных за радиоактивный распад, она нарушается. Даже в явлениях, не связанных с радиоактивными превращения­ми, влияние слабых взаимодействий приводит к ее небольшому нарушению. Так, в атомах относительная неточность зеркальной сим­метрии — порядка 10-15. Однако влияние этого ничтожного нарушения на переходы между очень близкими уровнями не так мало (порядка 10-3 - 10-8». В 1978 г. Л. М. Бар­кову и М., С. Золотареву из Новосибирского научного городка удалось обнаружить это явление.

Важнейшая симметрия, оказавшая влияние на всю современную физику, была обнаружена в начале XX в. Уже Г. Галилей открыл заме­чательное свойство механических движений: они не зависят оттого, в какой системе коорди­нат их изучать, в равномерно движущейся или в неподвижной. Нидерландский физик X. Лоренц в 1904 г. доказал, что таким свой­ством обладают и электродинамические явле­ния, причем не только для малых скоростей, но и для тел, двигающихся со скоростью, близ­кой к скорости света. При этом выяснилось, что скорость заряженных тел не может превы­сить скорости света.

Французский ученый А. Пуанкаре показал, что результаты Лоренца означают инвариант­ность уравнений электродинамики относитель­но поворотов в пространстве - времени, т. е. в пространстве, в котором кроме трех обычных координат есть еще одна — временная.

Но самый важный шаг сделал А. Эйнштейн, обнаруживший, что симметрия пространства-времени всеобщая, что не только электродинамика, но все явления приро­ды — физические, химические, биологиче­ские — не изменяются при таких поворотах. Ему удалось это сделать после глубокого и не сразу понятого современниками пересмотра привычных представлений о пространстве и времени.

Слово «поворот» надо было бы заключить в кавычки — это не обычный поворот. Поворот означает такое изменение координат, когда не изменяются расстояния между точками, например расстояние от какой-либо точки до начала координат. Математически в трехмер­ном пространстве это выглядит так:

Ö X12 + y12 + z12 = Ö x22 + y22 + z22 ,

где X1, y1, z1 и x2, y2, z2 — координаты до и после поворота.

В четырехмерном пространстве, о котором мы только что говорили, по четвертой оси отклады­вают время t, помноженное на скорость света с, и «поворот» соответствует неизменности не расстояния до начала координат, а величины

D = Öх2 + у2 + z2 - с2t2

Такой «поворот» обеспечивает постоянство скорости распространения света в разных системах координат. Действительно, уравнения для распространения света, испущенного из начала координат, имеют вид:

х2 + у2 + z2 = с2t2

Таким образом, все симметрии, кото­рые мы до сих пор рассматривали, объединя­ются в одну, всеобщую — все явления . природы инвариантны относительно сдвигов» поворотов и отражений в четырехмерном пространстве-времени. Инвариантность относительно сдвигов и поворотов в обычном пространстве получается как частный случай, когда сдвиг не изменяет отсчета времени или когда вращение происходит вокруг временной оси.

Нужно пояснить, что означает инвариан­тность явлений природы относительно поворо­тов. Все физические величины можно клас­сифицировать по тому, как они изменяются при повороте. Есть величины, определя­емые только их числовым значением, без указа­ния направления (например, объем, масса, плотность и др.), — они называются скаля­рами. Другие величины — векторы — определяются и направлением из начала ко­ординат в какую-либо точку пространства. При повороте системы координат квадрат векто­ра не изменяется, а его проекции на оси коорди­нат изменяются по установленному физикой закону.

Есть величины, изменяющиеся более сложно, например как произведение двух векто­ров. Они называются тензорными.

Кроме векторных и тензорных величин существуют другие, которые изменяются заданным образом при поворотах. Их называют спинорами. Из спиноров можно образо­вать квадратичную комбинацию, изменяющу­юся, как вектор, или скалярную, не изменяющу­юся при поворотах.

Неизменность законов или уравнений при поворотах означает, что во всех слагаемых уравнения и в левой и в правой части стоят величины, одинаково изменяющиеся при пово­ротах.

Так же как бессмысленно сравнивать вели­чины разной размерности, скажем время и длину, массу и скорость, невозможно и равен­ство, в котором слева — скаляр, а справа — вектор.

Суть симметрии именно в разделении величин на векторы, скаляры, тензоры, спиноры .

Все рассмотренные симметрии называются пространственными. Кроме них, в физике элементарных частиц играют важную, роль внутренние симметрии, озна­чающие неизменность явлений при внутренних изменениях полей или частиц. Примером может служить изотопиче­ская инвариантность сильных взаимодействий, которая проявляется в независимости свойств некоторых частиц от их «зарядового» состояния. Так свойства нейтрона и протона по отно­шению к сильным взаимодействиям с большой точностью совпадают.

Важнейшее следствие симметрии состоит в том, что каждой симметрии, как внутренней, так и пространственной, соответствует свой закон сохранения. В частности, закон сохранения энергии есть строгое следствие однородности времени, а закон сохране­ния импульса (количества движения) следует из однородности пространства. Это же относится и ко всем остальным симмет­риям.

Спонтанное нарушение симметрии

Большинство симметрии возникает при некото­рой идеализации задачи. Учет влияния более сложных взаимодействий приводит к нарушению сим­метрии. Например, независимость энергии ато­ма водорода от орбитального момента дела­ется неточной, и симметрия слегка нарушается, если учесть релятивистские поправки к движе­нию электрона. Даже законы сохранения, связанные с пространственной симметрией, очень слабо, но все же нарушаются неоднородностью Вселен­ной во времени и пространстве.

Существует гораздо более важное наруше­ние симметрии — спонтанное (самопро­извольное). Оно заключается в том, что в сис­теме, описываемой симметричными законами и удовлетворяющей симметричным начальным условиям, возникают несимметричные конеч­ные состояния. Рассмотрим, например, следу­ющий простой эксперимент. Пусть металли­ческий стержень сжимается в гидравлическом прессе, так что вся эта система и все действу­ющие в ней силы обладают цилиндрической симметрией. Если сила давления на стержень превышает его предел прочности на изгиб, то система становится неустойчивой и стержень изгибается (а затем и ломается) в каком-то произвольном направлении по азимуту. Итак, цилиндрическая симметричная система спонтанно перешла в состояние, не облада­ющее исходной симметрией.

Перейти на страницу номер:
 1  2  3 

© 2010-2024 рефераты по менеджменту