Существует, кроме того, зеркальная симметрия — волчок, закрученный направо, ведет себя так же, как закрученный налево, единственная разница в том, что фигуры движения правого волчка будут зеркальным отражением фигур левого.
Существуют зеркально асимметричные молекулы, но, если они образуются в одинаковых условиях, число левых молекул равно числу правых.
Зеркальная симметрия явлений природы неточная, как и большинство других симметрий. В слабых взаимодействиях, ответственных за радиоактивный распад, она нарушается. Даже в явлениях, не связанных с радиоактивными превращениями, влияние слабых взаимодействий приводит к ее небольшому нарушению. Так, в атомах относительная неточность зеркальной симметрии — порядка 10-15. Однако влияние этого ничтожного нарушения на переходы между очень близкими уровнями не так мало (порядка 10-3 - 10-8». В 1978 г. Л. М. Баркову и М., С. Золотареву из Новосибирского научного городка удалось обнаружить это явление.
Важнейшая симметрия, оказавшая влияние на всю современную физику, была обнаружена в начале XX в. Уже Г. Галилей открыл замечательное свойство механических движений: они не зависят оттого, в какой системе координат их изучать, в равномерно движущейся или в неподвижной. Нидерландский физик X. Лоренц в 1904 г. доказал, что таким свойством обладают и электродинамические явления, причем не только для малых скоростей, но и для тел, двигающихся со скоростью, близкой к скорости света. При этом выяснилось, что скорость заряженных тел не может превысить скорости света.
Французский ученый А. Пуанкаре показал, что результаты Лоренца означают инвариантность уравнений электродинамики относительно поворотов в пространстве - времени, т. е. в пространстве, в котором кроме трех обычных координат есть еще одна — временная.
Но самый важный шаг сделал А. Эйнштейн, обнаруживший, что симметрия пространства-времени всеобщая, что не только электродинамика, но все явления природы — физические, химические, биологические — не изменяются при таких поворотах. Ему удалось это сделать после глубокого и не сразу понятого современниками пересмотра привычных представлений о пространстве и времени.
Слово «поворот» надо было бы заключить в кавычки — это не обычный поворот. Поворот означает такое изменение координат, когда не изменяются расстояния между точками, например расстояние от какой-либо точки до начала координат. Математически в трехмерном пространстве это выглядит так:
Ö X12 + y12 + z12 = Ö x22 + y22 + z22 ,
где X1, y1, z1 и x2, y2, z2 — координаты до и после поворота.
В четырехмерном пространстве, о котором мы только что говорили, по четвертой оси откладывают время t, помноженное на скорость света с, и «поворот» соответствует неизменности не расстояния до начала координат, а величины
D = Öх2 + у2 + z2 - с2t2
Такой «поворот» обеспечивает постоянство скорости распространения света в разных системах координат. Действительно, уравнения для распространения света, испущенного из начала координат, имеют вид:
х2 + у2 + z2 = с2t2
Таким образом, все симметрии, которые мы до сих пор рассматривали, объединяются в одну, всеобщую — все явления . природы инвариантны относительно сдвигов» поворотов и отражений в четырехмерном пространстве-времени. Инвариантность относительно сдвигов и поворотов в обычном пространстве получается как частный случай, когда сдвиг не изменяет отсчета времени или когда вращение происходит вокруг временной оси.
Нужно пояснить, что означает инвариантность явлений природы относительно поворотов. Все физические величины можно классифицировать по тому, как они изменяются при повороте. Есть величины, определяемые только их числовым значением, без указания направления (например, объем, масса, плотность и др.), — они называются скалярами. Другие величины — векторы — определяются и направлением из начала координат в какую-либо точку пространства. При повороте системы координат квадрат вектора не изменяется, а его проекции на оси координат изменяются по установленному физикой закону.
Есть величины, изменяющиеся более сложно, например как произведение двух векторов. Они называются тензорными.
Кроме векторных и тензорных величин существуют другие, которые изменяются заданным образом при поворотах. Их называют спинорами. Из спиноров можно образовать квадратичную комбинацию, изменяющуюся, как вектор, или скалярную, не изменяющуюся при поворотах.
Неизменность законов или уравнений при поворотах означает, что во всех слагаемых уравнения и в левой и в правой части стоят величины, одинаково изменяющиеся при поворотах.
Так же как бессмысленно сравнивать величины разной размерности, скажем время и длину, массу и скорость, невозможно и равенство, в котором слева — скаляр, а справа — вектор.
Суть симметрии именно в разделении величин на векторы, скаляры, тензоры, спиноры .
Все рассмотренные симметрии называются пространственными. Кроме них, в физике элементарных частиц играют важную, роль внутренние симметрии, означающие неизменность явлений при внутренних изменениях полей или частиц. Примером может служить изотопическая инвариантность сильных взаимодействий, которая проявляется в независимости свойств некоторых частиц от их «зарядового» состояния. Так свойства нейтрона и протона по отношению к сильным взаимодействиям с большой точностью совпадают.
Важнейшее следствие симметрии состоит в том, что каждой симметрии, как внутренней, так и пространственной, соответствует свой закон сохранения. В частности, закон сохранения энергии есть строгое следствие однородности времени, а закон сохранения импульса (количества движения) следует из однородности пространства. Это же относится и ко всем остальным симметриям.
Большинство симметрии возникает при некоторой идеализации задачи. Учет влияния более сложных взаимодействий приводит к нарушению симметрии. Например, независимость энергии атома водорода от орбитального момента делается неточной, и симметрия слегка нарушается, если учесть релятивистские поправки к движению электрона. Даже законы сохранения, связанные с пространственной симметрией, очень слабо, но все же нарушаются неоднородностью Вселенной во времени и пространстве.
Существует гораздо более важное нарушение симметрии — спонтанное (самопроизвольное). Оно заключается в том, что в системе, описываемой симметричными законами и удовлетворяющей симметричным начальным условиям, возникают несимметричные конечные состояния. Рассмотрим, например, следующий простой эксперимент. Пусть металлический стержень сжимается в гидравлическом прессе, так что вся эта система и все действующие в ней силы обладают цилиндрической симметрией. Если сила давления на стержень превышает его предел прочности на изгиб, то система становится неустойчивой и стержень изгибается (а затем и ломается) в каком-то произвольном направлении по азимуту. Итак, цилиндрическая симметричная система спонтанно перешла в состояние, не обладающее исходной симметрией.