рефераты по менеджменту

Сетевое планирование

Страница
3

При построении сетевого графика необходимо соблюдать ряд правил.

1. В сетевой модели не должно быть «тупиковых» событий, то есть событий, из которых не выходит ни одна работа, за исключением завершающего события. Здесь либо работа не нужна и её необходимо аннулировать, либо не замечена необходимость определённой работы, следующей за событием для свершения какого-либо последующего события. В таких случаях необходимо тщательное изучение взаимосвязей событий и работ для исправления возникшего недоразумения.

2. В сетевом графике не должно быть «хвостовых» событий (кроме исходного), которым не предшествует хотя бы одна работа. Обнаружив в сети такие события, необходимо определить исполнителей предшествующих им работ и включить эти работы в сеть.

3. В сети не должно быть замкнутых контуров и петель, то есть путей, соединяющих некоторые события с ними же самими. При возникновении контура (а в сложных сетях, то есть в сетях с высоким показателем сложности, это встречается довольно часто и обнаруживается лишь при помощи ЭВМ) необходимо вернуться к исходным данным и путём пересмотра состава работ добиться его устранения.

4. Любые два события должны быть непосредственно связаны не более чем одной работой-стрелкой. Нарушение этого условия происходит при изображении параллельно выполняемых работ. Если эти работы так и оставить, то произойдёт путаница из-за того, что две различные работы будут иметь одно и то же обозначение. Однако содержание этих работ, состав привлекаемых исполнителей и количество затрачиваемых на работы ресурсов могут существенно отличаться.

В этом случае рекомендуется ввести фиктивное событие и фиктивную работу, при этом одна из параллельных работ замыкается на это фиктивное событие. Фиктивные работы изображаются на графике пунктирными линиями.

5. В сети рекомендуется иметь одно исходное и одно завершающее событие. Если в составленной сети это не так, то добиться желаемого можно путём введения фиктивных событий и работ.

Рисунок 2. Примеры введения фиктивных событий

Фиктивные работы и события необходимо вводить в ряде других случаев. Один из них — отражение зависимости событий, не связанных с реальными работами. Например, работы А и Б (рисунок 2, а) могут выполняться независимо друг от друга, но по условиям производства работа Б не может начаться раньше, чем окончится работа А. Это обстоятельство требует введения фиктивной работы С.

Другой случай — неполная зависимость работ. Например работа С требует для своего начала завершения работ А и Б, на работа Д связана только с работой Б, а от работы А не зависит. Тогда требуется введение фиктивной работы Ф и фиктивного события 3’, как показано на рисунке 2, б.

Кроме того, фиктивные работы могут вводиться для отражения реальных отсрочек и ожидания. В отличие от предыдущих случаев здесь фиктивная работа характеризуется протяжённостью во времени.

Если сеть имеет одну конечную цель, то программа называется одноцелевой. Сетевой график, имеющий несколько завершающих событий, называется многоцелевым и расчет ведется относительно каждой конечной цели. Примером может быть строительство жилого микрорайона, где ввод каждого дома является конечным результатом, и в графике по возведению каждого дома определяется свой критический путь.

Упорядочение сетевого графика

Предположим, что при составлении некоторого проекта выделено 12 событий: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 и 24 связывающие их работы: (0, 1), (0, 2), (0, 3), (1, 2), (1, 4), (1, 5), (2, 3), (2, 5), (2, 7), (3, 6), (3, 7), (3, 10), (4, 8), (5, 8), (5, 7), (6, 10), (7, 6), (7, 8), (7, 9), (7, 10), (8, 9), (9, 11), (10, 9), (10, 11). Составили исходный сетевой график 1.

Упорядочение сетевого графика заключается в таком расположении событий и работ, при котором для любой работы предшествующее ей событие расположено левее и имеет меньший номер по сравнению с завершающим эту работу событием. Другими словами, в упорядоченном сетевом графике все работы-стрелки направлены слева направо: от событий с меньшими номерами к событиям с большими номерами.

Разобьём исходный сетевой график на несколько вертикальных слоёв (обводим их пунктирными линиями и обозначаем римскими цифрами).

Поместив в I слое начальное событие 0, мысленно вычеркнем из графика это событие и все выходящие из него работы-стрелки. Тогда без входящих стрелок останется событие 1, образующее II слой. Вычеркнув мысленно событие 1 и все выходящие из него работы, увидим, что без входящих стрелок остаются события 4 и 2, которые образуют III слой. Продолжая этот процесс, получим сетевой график 2.

Сетевой график 1. Неупорядоченный сетевой график

Сетевой график 2. Упорядочение сетевого графика с помощью слоёв

Теперь видим, что первоначальная нумерация событий не совсем правильная: так, событие 6 лежит в VI слое и имеет номер, меньший, чем событие 7 из предыдущего слоя. То же можно сказать о событиях 9 и 10.

Сетевой график 3. Упорядоченный сетевой график

Изменим нумерацию событий в соответствии с их расположением на графике и получим упорядоченный сетевой график 3. Следует заметить, что нумерация событий, расположенных в одном вертикальном слое, принципиального значения не имеет, так что нумерация одного и того же сетевого графика может быть неоднозначной.

Понятие о пути

Одно из важнейших понятий сетевого графика — понятие пути. Путь — любая последовательность работ, в которой конечное событие каждой работы совпадает с начальным событием следующей за ней работы. Среди различных путей сетевого графика наибольший интерес представляет полный путь — любой путь, начало которого совпадает с исходным событием сети, а конец — с завершающим.

Наиболее продолжительный полный путь в сетевом графике называется критическим. Критическими называются также работы и события, находящиеся на этом пути.

На сетевом графике 4 критический путь проходит через работы (1;2), (2;5), (5;6), (6;8) и равен 16. Это означает, что все работы будут закончены за 16 единиц времени. Критический путь имеет особое значение в системе СПУ, так как работы этого пути определят общий цикл завершения всего комплекса работ, планируемых при помощи сетевого графика. Зная дату начала работ и продолжительность критического пути, можно установить дату окончания всей программы. Любое увеличение продолжительно­сти работ, находящихся на критическом пути, задержит выполнение программы.

Сетевой график 4. Критический путь

На стадии управления и контроля над ходом вы­полнения программы основное внимание уделяется работам, находящимся на критическом пути или в силу отставания попавшим на критический путь. Для сокращения продолжительности проекта необходимо в первую очередь сокращать продолжительность работ, лежащих на критическом пути.

Перейти на страницу номер:
 1  2  3  4  5  6 

© 2010-2024 рефераты по менеджменту