Данная таблица указывает, что наиболее коллениарна Х2, затем Х4 и можно сказать что Х3 и Х5 вовсе не коллениарны. Следовательно в модель лучше включить Х3 и Х5, но проведенный последующий регрессионный анализ указывает что лучше включать в модель Х2 и Х3, т.е. производство ликеро-водочных изделий (Y) зависит от валового сбора сахарной свеклы (X2) и потребления пива (X3).
Анализ уравнения регрессии говорит, что при росте Х5 на 1 единицу в своих единицах измерения увеличит Y на 1.0552 единицы в своих единицах измерения, Отклонения основного тренда носят случайный характер, а данная модель определяет Y на 96.71% ( R-квадрат). Относительная ошибка апроксимации указывает об адекватности математической модели. Степень рассеянности Y мала (дисперсия=3.909). Распределение Y является нормальным, в ряду нет автокорреляции нельзя , а проверка на стационарность случайного компонента с помощью Х^2 (Х^2=10.04) указывает что коэффициенты корреляции неоднородны.
Основан на выборе наилучшего уравнения регрессии для этого рассчитывают значения сумм квадратов расхождения:
Хi | отклонение | Хi | отклонение | Хi | отклонение | Хi | отклонение | Хi | отклонение |
1 | 9174.74 | 12 | 5598.67 | 123 | 5589.96 | 1234 | 538.735 | 12345 | 185.547 |
2 | 8969.93 | 13 | 7329.06 | 124 | 545.654 | 1235 | 217.694 | ||
3 | 7608.97 | 14 | 2226.17 | 125 | 217.86 | 1245 | 185.690 | ||
4 | 6674.29 | 15 | 256.857 | 134 | 1176.13 | 1345 | 236.652 | ||
5 | 305.611 | 23 | 7607.95 | 135 | 240.845 | 2345 | 224.784 | ||
24 | 256.856 | 145 | 256.53 | ||||||
25 | 227.26 | 234 | 3506.0 | ||||||
34 | 5628.28 | 235 | 224.949 | ||||||
35 | 275.868 | 245 | 226.924 | ||||||
45 | 266.522 | 345 | 236.662 |
Из таблицы видно лучше всего взять модель 25 или 125.
модель |
R2 |
дисперсия |
25 |
0.9756 |
3.3709 |
125 |
0.9766 |
3.3005 |