рефераты по менеджменту

Введение в статистику

Страница
5

Все ли статистики критериев нормально распределены? Не все, но большинство из них либо имеют нормальное распределение, либо имеют распределение, связанное с нормальным и вычисляемое на основе нормального, такое как t, F или хи-квадрат. Обычно эти критериальные статистики требуют, чтобы анализируемые переменные сами были нормально распределены в совокупности. Многие наблюдаемые переменные действительно нормально распределены, что является еще одним аргументом в пользу того, что нормальное распределение представляет "фундаментальный закон". Проблема может возникнуть, когда пытаются применить тесты, основанные на предположении нормальности, к данным, не являющимся нормальными (смотри критерии нормальности в разделах Непараметрическая статистика и распределения или Дисперсионный анализ). В этих случаях вы можете выбрать одно из двух. Во-первых, вы можете использовать альтернативные "непараметрические" тесты (так называемые "свободно распределенные критерии", см. раздел Непараметрическая статистика и распределения). Однако это часто неудобно, потому что обычно эти критерии имеют меньшую мощность и обладают меньшей гибкостью. Как альтернативу, во многих случаях вы можете все же использовать тесты, основанные на предположении нормальности, если уверены, что объем выборки достаточно велик. Последняя возможность основана на чрезвычайно важном принципе, позволяющем понять популярность тестов, основанных на нормальности. А именно, при возрастании объема выборки, форма выборочного распределения (т.е. распределение выборочной статистики критерия , этот термин был впервые использован в работе Фишера, Fisher 1928a) приближается к нормальной, даже если распределение исследуемых переменных не является нормальным. Этот принцип иллюстрируется следующим анимационным роликом, показывающим последовательность выборочных распределений (полученных для последовательности выборок возрастающего размера: 2, 5, 10, 15 и 30), соответствующих переменным с явно выраженным отклонением от нормальности, т.е. имеющих заметную асимметричность распределения.

Однако по мере увеличения размера выборки, используемой для получения распределения выборочного среднего, это распределение приближается к нормальному. Отметим, что при размере выборки n=30, выборочное распределение "почти" нормально (см. на близость линии подгонки). Этот принцип называется центральной предельной теоремой (впервые этот термин был использован в работе Polya, 1920; по-немецки "Zentraler Grenzwertsatz").

Как узнать последствия нарушений предположений нормальности? Хотя многие утверждения других разделов Элементарных понятий статистики можно доказать математически, некоторые из них не имеют теоретического обоснования и могут быть продемонстрированы только эмпирически, с помощью так называемых экспериментов Moнте-Кaрло. В этих экспериментах большое число выборок генерируется на компьютере, а результаты полученные из этих выборок, анализируются с помощью различных тестов. Этим способом можно эмпирически оценить тип и величину ошибок или смещений, которые вы получаете, когда нарушаются определенные теоретические предположения тестов, используемых вами. Исследования с помощью методов Монте- Карло интенсивно использовались для того, чтобы оценить, насколько тесты, основанные на предположении нормальности, чувствительны к различным нарушениям предположений нормальности. Общий вывод этих исследований состоит в том, что последствия нарушения предположения нормальности менее фатальны, чем первоначально предполагалось. Хотя эти выводы не означают, что предположения нормальности можно игнорировать, они увеличили общую популярность тестов, основанных на нормальном распределении.

Перейти на страницу номер:
 1  2  3  4  5 

© 2010-2024 рефераты по менеджменту