Расчеты показали, что при заданном соотношении цены Ц = 8752,15, затрат на единицу продукции З = 7704,90 и уровне прибыльности Mпр = 13,59%, получаем расчетное значение 1,136 , что вызывает отклонение от золотой спирали в 100 004 979%. Минимальное отклонение от золотой спирали (1,618) составит 0,50% в следующем случае: для уровня прибыльности Mпр = 10% оптимальный объем выпуска продукции составит 10 298,237 денежных единиц, при этом 3,40.
B |
1,2 |
1,3 |
1,4 |
1,5 |
К / Y (Мпр=13,59%) |
17,73 |
6,92 |
4,30 |
3,12 |
К90 /Y (Мпр=13,59%) |
0,83 |
0,77 |
0,71 |
0,67 |
К/К90 |
21,27 |
9,00 |
6,02 |
4,68 |
± % (1,618) |
1 214,71 |
456,23 |
272,19 |
189,24 |
К |
381 702,60 |
149 070,23 |
92 621,28 |
67 181,45 |
3,6 |
3,7 |
3,8 |
3,9 |
4 |
0,46 |
0,44 |
0,43 |
0,41 |
0,40 |
0,28 |
0,27 |
0,26 |
0,26 |
0,25 |
1,66 |
1,64 |
1,62 |
1,60 |
1,59 |
2,57 |
1,31 |
0,14 |
-0,94 |
-1,95 |
9 926,38 |
9 539,25 |
9 181,18 |
8 849,02 |
8 540,06 |
Таким образом, анализ работы предприятия показал, что существующий режим его работы далек от идеального и должен быть перестроен с учетом рекомендаций, получаемых из соответствия "золотому сечению".
Помимо рассмотренного выше примера применения "золотой пропорции" можно рассмотреть вопрос получения максимального прироста прибыли предприятия по двум факторам - фиксированному выпуску продукции в стоимостном выражении при различных затратах и возможному выпуску продукции при фиксированных затратах. Первый фактор назовем качественным и обозначим через (, а второй - структурным и обозначим через (. Один из простых вариантов разложения прироста прибыли исходит из принятого в экономической статистике принципа, согласно которому при оценке влияния какой-либо величины принимаются значения базисного и текущего периодов. Факторы базисного периода обозначим через (о, (о, факторы текущего периода - (1, (1. Тогда имеем:
где j1 и j2 - удельный вес вклада качественного и структурного факторов. Соответственно, общая формула для определения состава прироста прибыли по факторам будет
Есть основания полагать, что при наличии достаточной статистической базы будут равны соответственно 0,618 и 0,382, то есть соотноситься по правилу "золотого сечения". Экономическая система, построенная по данному правилу, будет обладать наибольшей силой развития.
Пример 2
Пусть yi - выпуск продукции по i-м видам; xj - затраты на j-й ресурс;
- матрица затрат j-го ресурса на единицу i-й продукции при k-м способе производства, где k - номер матрицы.
Например, в нашем случае С1 - обычная матрица затрат на предприятии, С2 - матрица затрат при условии, что предприятие находится в свободной экономической зоне. Введем коэффициенты (j, которые будут отражать возможность уменьшить затраты ресурсов за счет правильной организации труда, ресурсосберегающих мероприятий и т.д.
Тогда математическая модель имеет следующий вид:
Прибыль, получаемая при х и у, где х0j - затраты в базисном периоде и y0j - выпуск в базисном периоде, соответственно в ценах qj и pi;
Ресурсы, необходимые для обеспечения выпуска у, совпадают с имеющимся запасом ресурсов x. Коэффициенты (i показывают, какая часть выпуска делается по определенной технологии i = 1, k.
Сумма долей выпуска, осуществляемого по всем способам производства, равна 1.
Попробуем отдельно учитывать влияние качественного и структурного изменения в производстве. В зависимости от того, какой из коэффициентов будет участвовать в формуле, мы сможем определить удельный вес качественного или структурного фактора.
1. Структурные изменения будем выражать, изменяя (i и Yi при постоянных х01, все (j=1. Изменения будут происходить за счет структурных преобразований.
С помощью "поиска решения" определяем максимальную прибыль при заданных условиях (13) и (j=1. На втором этапе нам необходимо найти , где - максимальная прибыль. Тогда удельный структурный фактор определим исходя из формулы
С помощью поиска решения находим (14), требуя выполнения равенства 0,618, изменяя (i и Yi при постоянных х0j.