Наблюдение, анализ и моделирование являются средствами познания и прогнозирования процессов, явлений и ситуаций во всех сферах объективной действительности. Наблюдения за явлениями природы, постановка экспериментов позволили установить физические законы. Эти законы проявляются в определенных количественных соотношениях между параметрами процесса или явления независимо от того, происходят ли они в действительности или их реализацию можно только представить.
Знание физических законов позволяет облечь их в ту или иную математическую форму, после чего, решая дифференциальные, алгебраические уравнения или производя другие вычисления, мы получим значения интересующих нас параметров или показателей.
В процессе моделирования очень важным является системное представление о рассматриваемом объекте (систематизация), первое и главное свойство которого – наличие цели, для реализации которой предназначается рассматриваемая совокупность предметов, явлений, логических представлений, формирующих объект. Цель функционирования системы редуцирует системные признаки, с помощью которых описываются, характеризуются элементы системы. При изменении цели другими могут стать как существенные системные признаки, так и связи с внешней средой.
Для выделения системы требуется наличие:
· цели, для реализации которой формируется система;
· объекта исследования, состоящего из множества элементов, связанных в единое целое важными, с точки зрения цели, системными признаками;
· субъекта исследования («наблюдателя»), формирующего систему;
· характеристик внешней среды по отношению к системе и отражения ее взаимосвязей с системой.
Наличие субъекта исследования и некоторая неоднозначность, субъективность при выделении существенных системных признаков вызывают значительные трудности для однозначного выделения системы и соответственно ее универсального определения.
Изложенное выше дает возможность определить систему как упорядоченное представление об объекте исследования с точки зрения поставленной цели. Упорядоченность заключается в целенаправленном выделении системообразующих элементов, установлении их существенных признаков, характеристик взаимосвязей между собой и с внешней средой. Системный подход, формирование системы позволяют выделить главное, наиболее существенное в исследуемых объектах и явлениях; игнорирование второстепенного упрощает, упорядочивает в целом изучаемые процессы. Для анализа многих сложных объектов и ситуаций такой подход важен сам по себе, однако, как правило, построение системы служит предпосылкой для разработки или реализации модели конкретной ситуации или объекта.
Описанный подход предполагает ясность цели исследования и детерминированное к ней отношение всех элементов системы, взаимосвязь между ними и с внешней средой. Такие системы называют детерминированными.
Альтернативу представляют системы со стохастической структурой (случайной природы), когда либо отсутствует ясно выраженная цель исследования, либо по отношению к ней нет полной определенности, какие признаки считать существенными, а какие – нет; то же относится и к связям элементов системы с внешней средой.
Методы построения и исследования стохастических систем, как правило, более сложны, чем детерминированных. В некоторых случаях существуют способы сведения стохастических систем к специальным образом построенным детерминированным.
Структура и свойства модели зависят от целей, для достижения которых она создается. В этом органическое единство системы и модели. Если неизвестна цель моделирования, то неизвестно и с учетом каких свойств и качеств надо строить модель.
Модель определяется как формализованное представление об объекте исследования с точки зрения поставленной цели.
Различия между определениями системы и модели состоят в том, что систематизация предполагают лишь упорядочение, тогда как моделирование – формализацию взаимосвязей между элементами системы и с внешней средой.
Под моделированием понимается исследование объектов познания не непосредственно, а косвенным путем, при помощи моделей.
Модели можно различать по ряду признаков: характеру моделируемых объектов, сферам приложения, глубине моделирования, средствам моделирования. По последнему признаку методы моделирования делятся на две группы: материальное (предметное) и идеальное.
Материальное моделирование, основывающееся на материальной аналогии моделируемого объекта и модели, осуществляется с помощью воспроизведения основных геометрических, физических, других функциональных характеристик изучаемого объекта. Частным случаем материального моделирования является физическое моделирование, по отношению к которому, в свою очередь, частным случаем является аналоговое моделирование. Оно основано на аналогии явлений, имеющих различную физическую природу, но описываемых одинаковыми математическими соотношениями. Пример аналогового моделирования – изучение механических колебаний с помощью электрической системы, описываемой теми же дифференциальными уравнениями. Так как эксперименты с электрической системой обычно проще и дешевле, она исследуется в качестве аналога механической системы.
Идеальное моделирование отличается от материального принципиально. Оно основано на идеальной, или мыслимой, аналогии. В экономических исследованиях это основной вид моделирования. Идеальное моделирование, в свою очередь, разбивается на два подкласса: знаковое (формализованное) и интуитивное.
Интуитивное моделирование встречается в тех областях науки, где познавательный процесс находится на начальной стадии или имеют место очень сложные системные взаимосвязи. Такие исследования называют мысленными экспериментами. В экономике до последнего времени в основном применялось интуитивное моделирование; оно описывает практический опыт работников.
При знаковом моделировании моделями служат схемы, графики, чертежи, формулы. Важнейшим видом знакового моделирования является математическое моделирование, осуществляемое средствами логико-математических построений.
Анализ процессов, происходящих в системах, и эффективное решение задач расчета, проектирования и конструирования систем и устройств возможны лишь с применением языка и методов математики. Причем первым этапом при исследовании или конструировании системы является составление математического описания (математической модели) ее элементов и системы в целом.
Составление математического описания конструктивного элемента системы состоит из следующих последовательных процедур: принятие исходных допущений; выбор входных и выходных переменных; выбор систем отсчета для каждой переменной; применение физического, экономического или иного принципа или закона, отражающего в математической форме закономерности протекания процесса.
| |||||||||||
| |||||||||||
Наи