Существует вариант метода Монте-Карло, согласно которому можно не задавать какое-либо конкретное распределение для моделирования цен, а использовать непосредственно исторические данные. Подобно методу исторического моделирования, на основе ретроспективы моделируются гипотетические цены, но их последовательность не является единственной и не ограничена глубиной периода ретроспективы, поскольку выборка производится с возвращением (bootstrap), т. е. возмущение из исторических данных выбирается случайным образом, и каждый раз в выборе участвуют все данные. Такое построение выборки исторических данных позволяет учесть эффект «толстых хвостов» и скачки цен, не строя предположений о виде распределения. Это несомненные достоинства метода, который, в отличие от метода исторического моделирования, позволяет рассмотреть не какую-либо одну траекторию цен (сценарий), а сколь угодно много, что, как правило, повышает точность оценок. Недостатками данной методики являются низкая точность при малых объемах выборки и использование предположения о независимости доходностей во времени.
Теперь рассмотрим метод Монте-Карло для портфеля активов. Чтобы проводить моделирование по Монте-Карло для многофакторного процесса, можно точно так же моделировать каждый из к рассматриваемых факторов исходя из сгенерированных случайных чисел:
dSt,j = μt,j St,j dt + σt,j St,j Sdzt,j, j = 1,2, …, k, (5)
или для дискретного времени:
∆St,j = St-1,j(μj∆t + σjεj√∆t), j = 1,2, …, k. (6)
С целью учета корреляции между факторами необходимо, чтобы случайные величины εi и εj точно так же коррелировали между собой. Для этого используется разложение Холецкого, суть которого состоит в разложении корреляционной матрицы на две (множители Холецкого) и использовании их для вычисления коррелированных случайных чисел.
Корреляционная матрица является симметричной и может быть представлена произведением треугольной матрицы низшего порядка с нулями в верхнем правом углу на такую же транспонированную матрицу. Например, для случая двух факторов имеем:
Отсюда
Коррелированные случайные числа ε1 и ε2 получаются путем перемножения множителя Холецкого и вектора независимых случайных чисел η:
При расчетах необходимо правильно выбрать количество множителей,
чтобы получилась положительно определенная матрица.
Достоинства метода Монте-Карло:
высокая точность расчетов;
высокая точность применительно к инструментам с нелинейными ценовыми характеристиками;
возможность моделирования любых исторических и гипотетических распределений, учет эффекта «толстых хвостов» и скачков цен (вегариска).
Недостатки метода Монте-Карло:
высокая сложность моделей и соответственно высокий риск неадекватности моделей;
высокие требования к вычислительной мощности и значительные затраты времени на проведение расчетов.
Вывод
В данной работе был рассмотрен метод Монте – Карло. Этот метод имитации применим для решения почти всех задач при условии, что альтернативы могут быть выражены количественно. Построение модели начинается с определения функциональных зависимостей в реальной системе, которые в последствии позволяют получить количественное решение, используя теорию вероятности и таблицы случайных чисел.
Модель Монте-Карло не столь формализована и является более гибкой, чем другие имитирующие модели. Причины здесь следующие:
при моделировании по методу Монте-Карло нет необходимости определять, что именно оптимизируется;
нет необходимости упрощать реальность для облегчения решения, поскольку применение ЭВМ позволяет реализовать модели сложных систем;
в программе для ЭВМ можно предусмотреть опережения во времени.
Данный метод является общепризнанным и наилучшим, так как обладает рядом непреодолимых достоинств, в частности использует гипотезу о нормальном распределении доходностей, показывает высокую точность для нелинейных инструментов и устойчив к выбор ретроспективы. К недостаткам можно отнести техническую сложность расчётов и модельный риск.