рефераты по менеджменту

Принципы динамической организации

Страница
2

Правомерность первого принципа динамической организации можно продемонстрировать и в динамике . Тело , движущееся с некоторой начальной скоростью в равновесной окружающей среде , преодолевает силы трения и осуществляет нетождественный обмен , передавая в окружающую среду материю , связанную с его импульсом и кинетической энергией . Этот процесс завершается , как известно , полной остановкой тела , уравновешиванием его с окружающей средой и обращением нетождественного обмена в стационарный тождественный .

В заключении рассмотрения первого принципа динамической организации можно дать ему вторую , совершенно очевидную формулировку . Равновесная среда уравновешивает любую находящуюся в ней систему , то есть обращает внутренний и внешний обмен системы в усреднённо стационарный тождественный (в общем случае) .

И третья формулировка для частного предельного случая внешнего равновесия : внутренний обмен системы , находящейся в равновесном окружении и лишённой положительной составляющей внешнего обмена в его суммарном значении (это условие означает , что система находится под действием только внутренних неуравновешенных в общем случае сил , то есть внутреннего обмена , внешние силы уравновешены) , ведёт систему к внутреннему равновесию и обращается в стационарный тождественный .

Принцип второй . Система сохраняет состояние неизменным , пока её обмен движущейся материи (внутренний и внешний) тождествен .

С точки зрения законов сохранения материи и движения этот принцип совершенно очевиден : система , осуществляющая тождественный обмен , абсолютно «прозрачна» для потока падающей на неё материи , вследствие чего проходящая через систему материя не оставляет в ней (системе) никакой следовой реакции .

Иллюстрируем правомерность этого принцип в примерами из различных отраслей природы .

В механике . Реальное инерциальное движение в той мере , в какой оно вообще имеет место (падение , например , шарика в вязкой жидкости под действием постоянной силы тяжести) , обязано не отсутствию сил , а их равновесию ,то есть выступает как результат тождественности некоего специфического обмена .[1] В этом обмене шарик получает движущуюся материю у ускоряющего поля и отдаёт её окружающей вещественной среде (вязкой жидкости) .

В термодинамике . Термодинамическая система , уравновешенная в изотермических условиях (газ в цилиндре под поршнем , например , или чёрное излучение в закрытой полости) , сохраняет (если пренебречь исчезающими малыми флюктуациями) равновесное состояние не в силу отсутствия взаимодействия , а в результате тождественного обмена частицами , излучением и пр.

В микромире . Микрочастицы (молекулы , атомы , ядра и элементарные частицы) сохраняют основное стационарное состояние неизменным , если отсутствует возмущающее воздействие извне в виде фотонов и других частиц . Это состояние сохраняется также в результате (в конечном итоге) акта присоединения - отчуждения фотона , например , ибо этот акт является тождественным обменом в его среднем значении в системе центра масс (фотон присоединяется , фотон отчуждается - атом возвращается в исходное основное состояние) . Хотя в процессе обмена состояние атома изменялось , но в конце этих событий , когда обмен за счёт обратимости микропроцессов оказался сбалансированным в тождественный , атом вновь оказался в том же исходном основном состоянии .

Рассмотрим предельный частный случай тождественного внешнего обмена , когда все его компоненты равны нулю (полный реальный обмен в нуль не обращается из-за того , что всякая материальная система обладает внутренним движением , то есть внутренним обменом , не обращающимся в нуль) .

В этом случае меняется формулировка второго принципа динамической организации : замкнутая система , осуществляющая тождественный внутренний обмен , сохраняет состояние неизменным (замкнутость системы означает отсутствие внешнего обмена) .

В механике материальной точки , не имеющей внутреннего состояния (можно сказать , обладающей тождественно нулевым внутренним обменом - идеализация) , последняя формулировка по содержанию совпадает с законом инерции : отсутствие сил - отсутствие обмена - отсутствие изменения состояния .

В термодинамике этот случай характеризуется равновесием замкнутой системы , а формулировка второго принципа динамической организации воспроизводит постулат о сохранении равновесия .

По отношению к микросистемам эта формулировка совпадает с известным в квантовой механике положением об устойчивости основного квантового состояния .

Таким образом второй принцип является обобщением трёх положений из различных областей (или сторон) природы : закона инерции - из механики ; постулата о сохранении равновесия замкнутой макросистемы - из термодинамики ; постулата об устойчивости стационарности основного состояния микросистем - из квантовой механики . Поэтому второй принцип динамической организации может быть назван обобщённым законом инерции .

Принцип третий . Динамическое состояние системы изменяется только в результате нетождественного (внутреннего и внешнего , внутреннего или внешнего) обмена движущейся материи .

Простейший случай - механика , здесь динамическое состояние свободного тела изменяется лишь при отличной от нуля производной импульса оп времени (равной действующей силе) , то есть при появлении ускорения , но при ускоренном движении наращиваются (или убывают) значения таких величин как энергия , масса , импульс , которые являются неотъемлемыми характеристиками субстанциональной стороны материи .[2] Поэтому при ускоренном движении тел можно говорить о накоплении материи как субстанции , которое является прямым изменением состояния тела , с одной стороны , а с другой - прямым результатом нетождественности обмена на входе над мощностью обмена на выходе или наоборот . Из этого следует , что третий принцип динамической организации в механике является обобщением второго закона динамики Ньютона .

В термодинамике макросистема изменяет состояние либо в результате присоединения (отчуждения) движущейся материи в различных формах (нетождественный внешний обмен) , либо в результате перераспределения движущейся материи внутри системы , через изменение её внутренней структуры (нетождественный внутренний обмен) . То же самое справедливо по отношению к микросистемам , в которых состояние изменяется либо вследствие распада , либо через поглощение других частиц , то есть в следствие нетождественного обмена .

Если разделить всю совокупность возможных изменений состояний на два класса - приближение к равновесию (к стабильному тождественному внутреннему обмену) и удаление от него , то можно сказать следующее . К равновесному состоянию система стремится как в условиях равновесной среды , то есть при тождественном внешнем обмене , так и случае отсутствующего внешнего обмена (при тождественно нулевом внешнем обмене) в результате нетождественного внутреннего обмена . Но выйти из равновесного состояния , характеризующегося стационарным тождественным обменом (микросистема в основном состоянии , уравновешенная макросистема) , в состояние неравновесное система внутренне не способна в отсутствие нетождественного внешнего обмена . В микросистемах возбуждение возможно лишь в результате положительного внешнего обмена (превышение мощности обмена на входе над мощностью обмена на выходе) , то есть за счёт поглощения других частиц . В макросистемах переход из равновесного в неравновесное состояние возможен как при положительном , так и при отрицательном внешнем обмене .

Перейти на страницу номер:
 1  2  3 

© 2010-2025 рефераты по менеджменту