для которой имеются таблицы [7]. После вычисления порогового значения оценка коэффициента корреляции считается значимой, если .
Для определения значимости оценки коэффициента Спирмена можно воспользоваться критерием Стьюдента, поскольку величина [12]
(5.61)
приближенно распределена по закону Стьюдента с n – 2 степенями свободы.
Если в ранжировках имеются связанные ранги, то коэффициент Спирмена вычисляется по следующей формуле [12]:
(5.62)
где - оценка коэффициента ранговой корреляции Спирмена, вычисляемая по формуле (5.59), а величины равны [12]
(5.63)
В этих формулах и - количество различных связанных рангов в первой и второй ранжировках соответственно.
Коэффициент ранговой корреляции Кендалла при отсутствии связанных рангов определяется формулой [12]:
где n – количество объектов, - ранги объектов, sign x – функция, равная [12]
sign
Сравнительная оценка коэффициентов ранговой корреляции Спирмена и Кендалла показывает, что вычисление коэффициентов Спирмена производится по более простой формуле. Кроме того, коэффициент Спирмена дает более точный результат, поскольку он является оптимальной по критерию минимума средней квадрата ошибки оценкой коэффициента корреляции.
Отсюда следует, что при практических расчетах корреляционной зависимости ранжировок предпочтительнее использовать коэффициент ранговой корреляции Спирмена.
ЗАКЛЮЧЕНИЕ
Динамизм и новизна современных народнохозяйственных задач, возможность возникновения разнообразных факторов, влияющих на эффективность решений, требуют, чтобы эти решения принимались быстро и в то же время были хорошо обоснованы. Опыт, интуиция, чувство перспективы в сочетании с информацией помогают специалистам точнее выбирать наиболее важные цели и направления развития, находить наилучшие варианты решения сложных научно-технических и социально-экономических задач в условиях, когда нет информации о решении аналогичных проблем в прошлом.
Использование метода экспертных оценок помогает формализовать процедуры сбора, обобщения и анализа мнений специалистов с целью преобразования их в форму, наиболее удобную для принятия обоснованного решения.
Но, следует заметить, что метод экспертных оценок не может заменить ни административных, ни плановых решений, он лишь позволяет пополнить информацию, необходимую для подготовки и принятия таких решений. Широкое использование экспертных оценок правомерно только там, где для анализа будущего невозможно применить более точные методы.
Экспертные методы непрерывно развиваются и совершенствуются. Основные направления этого развития определяются рядом факторов, в числе которых можно указать на стремление расширить области применения, повысить степень использования математических методов и электронно-вычислительной техники, а также изыскать пути устранения выявляющихся недостатков.
Несмотря на успехи, достигнутые в последние годы в разработке и практическом использовании метода экспертных оценок, имеется ряд проблем и задач, требующих дальнейших методологических исследований и практической проверки. Необходимо совершенствовать систему отбора экспертов, повышение надежности характеристик группового мнения, разработку методов проверки обоснованности оценок, исследование скрытых причин, снижающих достоверность экспертных оценок.
Однако, уже и сегодня экспертные оценки в сочетании с другими математико-статистическими методами являются важным инструментом совершенствования управления на всех уровнях.