рефераты по менеджменту

Теория игр

Страница
2

Позиционные игры, класс бескоалиционных игр, в которых принятие игроками решений (т. е. выбор ими стратегий) рассматривается как многошаговый или даже непрерывный процесс. Другими словами, в П. и. в ходе процесса принятия решений субъект проходит последовательность состояний, в каждом из которых ему приходится принимать некоторое частичное решение. Поэтому в П. и. стратегии игроков можно понимать как функции, ставящие в соответствие каждому информационному состоянию игрока (т. е. состоянию, характеризуемому информацией игрока о положении дел в игре в данный момент) выбор некоторой возможной в этом состоянии альтернативы.

И. т. является нормативной теорией, тоесть предметом её изучения являются не столько сами модели конфликтов (игры), как таковые, сколько содержание принимаемых в играх принципов оптимальности, существования ситуаций, на которых эти принципы оптимальности реализуются (такие ситуации или множества ситуаций называются решениями в смысле соответствующего принципа оптимальности), и, наконец, способы нахождения таких ситуаций. Рассматриваемые в И. т. объекты — игры — весьма разнообразны, и пока не удалось установить принципов оптимальности, общих для всех классов игр. Практически это означает, что единого для всех игр истолкования понятия оптимальности ещё не выработано. Поэтому прежде чем говорить, например, о наивыгоднейшем поведении игрока в игре, необходимо установить, в каком смысле эта выгодность понимается. Все применяемые в И. т. принципы оптимальности при всём их внешнем разнообразии отражают прямо или косвенно идею устойчивости ситуаций или множеств ситуаций, составляющих решения. В бескоалиционных играх основным принципом оптимальности считается принцип осуществимости цели, приводящий к ситуациям равновесия. Эти ситуации характеризуются тем свойством, что любой игрок, который отклонится от ситуации равновесия (при условии, что остальные игроки не изменят своих стратегий), не увеличит этим своего выигрыша.

В частном случае антагонистических игр принцип осуществимости цели превращается в так называемый принцип максимина (отражающий стремление максимизировать минимальный выигрыш).

Принципы оптимальности (первоначально выбиравшиеся интуитивно) выводятся на основании некоторых заранее задаваемых их свойств, имеющих характер аксиом. Существенно, что различные применяемые в И. т. принципы оптимальности могут противоречить друг другу.

Теоремы существования в И. т. доказываются преимущественно теми же неконструктивными средствами, что и в других разделах математики: при помощи теорем о неподвижной точке, о выделении из бесконечной последовательности сходящейся подпоследовательности и т. п., или же, в весьма узких случаях, путём интуитивного указания вида решения и последующего нахождения решения в этом виде.

Фактическое решение некоторых классов антагонистических игр сводится к решению дифференциальных и интегральных уравнений, а матричных игр — к решению стандартной задачи линейного программирования. Разрабатываются приближённые и численные методы решения игр. Для многих игр оптимальными оказываются так называемые смешанные стратегии, то есть стратегии, выбираемые случайно (например, по жребию).

Задача

Предприятие может выпускать два вида продукции, используя один набор компонентов, причем количество выпускаемой продукции определяется целыми числами. Прибыль, получаемая предприятием от продажи единицы продукции каждого вида, расход каждого из компонентов на производство единицы продукции каждого вида и лимиты по каждому из компонентов представлены в Таблице 1.

Необходимо определить количество продукции каждого вида, которое необходимо выпустить для получения максимальной прибыли при условии не перерасходования лимитов по компонентам. Данная задача решается

Таблица 1

Математическая формулировка задачи:

F= 5x+4x→max

3x +3x ≤29

5x +8x ≤22

3x +9x ≤31

9x +8x ≤23

х, х - выпускаемое количество продукции.

Решение с использованием функции Microsoft Excel «Поиск решения».

1. Вводим исходные данные (Таблица 1).

2. Вводим формулы в ячейки, значения которых нам неизвестны.

B8=B6*B7+C6*C7

3. Выполнить команду Сервис → Поиск решения. Откроется диалоговое окно Поиск решения.(Рисунок 2).

· Установить курсор в поле Установить целевую ячейку диалогового окна и щелкнуть мышкой на целевой ячейке В8.

· Устанавить максимальное значание.

· Установить курсор в поле Изменяя ячейки и выделить диапазон изменяемых ячеек В6:С6.

· Установить курсор в поле Ограничения, щелкнуть кнопку Добавить и вводить в появившееся диалоговое окно (Рисунок 1) поочередно все необходимые ограничения.

Рисунок 2.1

· Щелкнуть на кнопке Выполнить диалогового окна Поиск решения.

Результаты поиска решения представлены в Таблице 2, Рисунок 3.

Решив задачу, я определила, что количество выпускаемой продукции первого типа равно 2 ед., второго – 0 ед., т.е. производство продукции второго типа будет нерентабельным и поэтому будет лучше отказаться от выпуска этой продукции. Общая прибыль равна 10. При этом соблюдены все введенные мною ограничения.

Таблица 2

Рисунок 2.3

Заключение

И. т., созданная для математического решения задач экономического и социального происхождения, не может в целом сводиться к классическим математическим теориям, созданным для решения физических и технических задач. Однако в различных конкретных вопросах И. т. широко используются весьма разнообразные классические математические методы. Кроме этого, И. т. связана с рядом математических дисциплин внутренним образом. В И. т. систематически и по существу употребляются понятия теории вероятностей. На языке И. т. можно сформулировать большинство задач математической статистики.

И. т. применяется в экономике, технике, военном деле и даже в антропологии. Основные трудности практического применения И. т. связаны с экономической и социальной природой моделируемых ею явлений и недостаточным умением составлять такие модели на количественном уровне.

Перейти на страницу номер:
 1  2 

© 2010-2025 рефераты по менеджменту